【“第二课堂”AI实践课堂笔记】:5__基于大语言模型的智能体入门

大模型开发背景

大模型工作原理

大模型,通常指的是大型的人工智能模型,如大型语言模型,它们能够理解和生成自然语言文本。这些模型的工作原理基于深度学习技术,特别是神经网络。

  • 构建大模型时,工作原理如下:

    1. 数据收集与预处理
      数据收集:大模型通常需要大量的数据来训练。
      预处理:数据在训练前需要经过预处理,包括清洗、分词、编码等步骤,以确保数据的质量和模型能够有效学习。
    2. 模型架构
      神经网络:大模型通常基于复杂的神经网络架构,如Transformer模型。这些网络由多层节点(或称为神经元)组成,能够学习数据中的复杂模式和关系。
      注意力机制:许多大型语言模型使用注意力机制来提高处理长序列数据的能力,允许模型在处理每个输入时关注不同的部分。
    3. 训练过程
      前向传播:在训练过程中,数据通过神经网络进行前向传播,模型根据当前权重和偏差生成输出。
      损失函数:模型的输出与真实标签之间的差异通过损失函数来衡量。
      反向传播:通过反向传播算法,模型根据损失函数的梯度调整权重和偏差,以减少预测误差。
      优化器:优化器如Adam或SGD用于更新网络的权重,以优化损失函数。
    4. 正则化与超参数调整
      正则化:为防止过拟合,模型可能使用正则化技术,如dropout或权重衰减。
      超参数调整:模型的性能受超参数(如学习率、批次大小等)的影响,这些通常通过实验和经验进行调整。
    5. 评估与微调
      评估:模型在验证集上评估性能,以确保它不仅在学习训练数据,而且能够泛化到未见过的数据。
      微调:在特定任务上,模型可能需要进一步的微调,以适应特定领域的语言或任务需求。
    6. 部署与应用
      部署:训练完成后,模型被部署为API或集成到应用程序中。
      应用:在部署后,模型可以用于各种应用,如文本生成、翻译、问答等。
  • 使用大模型时,工作原理如下:

请添加图片描述

大模型的固有缺陷

大语言模型存在一些固有缺陷,主要包括以下几个方面:

  1. 知识准确性问题
    • 可能产生错误信息
      大模型是通过对大量文本数据进行训练得到的,在训练数据中可能存在错误或不准确的信息,模型可能会学习并重复这些错误。由于模型只是根据其学习到的模式进行生成,而不一定能够准确判断信息的真实性,可能会给出看似合理但实际上错误的答案。
    • 知识更新不及时
      训练大模型需要大量的计算资源和时间,一旦模型训练完成,其知识就被固定在训练数据所涵盖的范围内。随着时间的推移,新的知识不断涌现,而大模型可能无法及时获取和更新这些新知识。
    • 表面的语言处理
      虽然大模型能够生成非常自然的语言文本,但它并不真正理解所处理的内容的含义。它只是根据训练数据中的模式和统计规律来生成回答,而不是基于对问题的真正理解。
    • 无法进行深度推理
      大模型在一定程度上可以进行简单的推理,但对于复杂的逻辑推理和深度思考往往表现不佳。它可能无法理解问题的隐含逻辑关系,也难以进行多步推理和分析。
  2. 数据偏差问题
    • 训练数据的偏差
      大模型的性能很大程度上取决于训练数据的质量和多样性。如果训练数据存在偏差,例如只包含特定地区、特定人群或特定观点的数据,那么模型在处理其他情况时可能会出现偏差。
    • 生成结果的偏差
      由于模型是在有偏差的训练数据上学习的,它在生成回答时也可能会表现出偏差。例如,在涉及性别、种族等敏感问题时,模型可能会给出带有偏见的回答。
      请添加图片描述

以下是一些可以尽力改善大模型固有缺陷的方法:

一、提高知识准确性

  1. 数据清洗与验证
    • 对用于训练的原始数据进行严格的清洗和验证,去除明显错误的信息。可以通过人工审核、利用已知的可靠数据源进行比对等方式,确保数据的准确性。
    • 例如,在处理历史数据时,组织专业的历史学家对相关内容进行审核,纠正错误的年代和事件描述。
  2. 持续更新与增量学习
    • 建立定期更新机制,不断将新的知识纳入模型的学习范围。可以通过持续收集新的文本数据、监测时事新闻和学术研究动态等方式,及时为模型提供最新的信息。
    • 采用增量学习的方法,在不重新训练整个模型的情况下,逐步更新模型的知识,提高知识的时效性。

二、增强理解和推理能力

  1. 多模态融合
    • 结合图像、音频等多模态信息进行训练,丰富模型对世界的感知和理解。例如,通过结合图像和文本描述,让模型更好地理解物体的特征和概念。
    • 多模态融合可以帮助模型建立更全面的认知体系,提高对复杂问题的理解和推理能力。
  2. 强化学习与深度推理
    • 引入强化学习方法,让模型在与环境的交互中不断学习和优化决策。通过设置奖励机制,鼓励模型进行更准确的推理和决策。
    • 开发专门的深度推理模块,针对复杂的逻辑问题进行专项训练,提高模型的深度思考能力。

三、解决数据偏差问题

  1. 多样化数据采集
    • 扩大数据采集的范围,涵盖不同地区、不同文化、不同人群的文本数据,以增加数据的多样性。可以从全球范围内的各种数据源收集数据,包括不同语言的文献、新闻、社交媒体等。
    • 例如,在训练一个通用的语言模型时,确保数据来自不同国家和地区,以减少文化偏见。
  2. 偏差检测与纠正
    • 开发偏差检测算法,对模型生成的结果进行检测,发现潜在的偏差。可以通过对比不同群体的回答分布、分析敏感词汇的使用情况等方式,检测模型是否存在偏差。
    • 一旦发现偏差,采取相应的纠正措施,如调整训练数据的权重、对模型进行重新训练等,以减少偏差的影响。

更多内容可以看文章–>大模型的不足与解决方案大模型的缺点及其解决途径

大模型开发

什么是大模型开发

以下是大模型开发的主要步骤和相关要点:
请添加图片描述

一、需求分析与目标确定

  1. 明确应用场景
    • 确定大模型的具体应用领域,如自然语言处理、计算机视觉、推荐系统等。不同的应用场景对模型的性能要求和功能特点有所不同。
    • 例如,在智能客服领域,模型需要具备准确理解用户问题、快速给出恰当回答的能力;而在图像识别领域,模型则需要能够准确识别不同物体和场景。
  2. 定义性能指标
    • 根据应用场景确定合适的性能指标,如准确率、召回率、F1 值、响应时间等。这些指标将用于评估模型的性能和效果。
    • 例如,对于文本分类任务,可以使用准确率和 F1 值作为主要性能指标;对于实时推荐系统,响应时间则是一个关键指标。

二、数据收集与预处理

  1. 数据收集
    • 收集大量与应用场景相关的高质量数据。数据来源可以包括互联网文本、数据库、传感器数据等。
    • 确保数据的多样性和代表性,涵盖不同的主题、风格和语言表达方式。例如,在开发自然语言处理模型时,收集来自不同领域、不同地区的文本数据。
  2. 数据清洗
    • 对收集到的数据进行清洗,去除噪声、错误和重复的数据。可以使用数据清洗工具和算法,如正则表达式、数据去重算法等。
    • 例如,去除网页中的广告、HTML 标签等无关内容,纠正文本中的拼写错误和语法错误。
  3. 数据标注
    • 如果需要进行监督学习,还需要对数据进行标注。标注的类型取决于具体的任务,如文本分类任务需要标注文本的类别,图像识别任务需要标注图像中的物体。
    • 可以采用人工标注或自动标注的方法。人工标注准确性高,但成本较高;自动标注效率高,但可能存在一定的误差。

三、模型选择与架构设计

  1. 选择合适的模型类型
    • 根据应用场景和性能要求选择合适的大模型类型,如 Transformer 架构的语言模型、卷积神经网络(CNN)架构的图像模型等。
    • 不同的模型类型具有不同的特点和优势,需要根据具体情况进行选择。例如,Transformer 模型在自然语言处理任务中表现出色,而 CNN 模型在图像识别任务中具有较高的准确率。
  2. 设计模型架构
    • 在选择的模型类型基础上,进行模型架构的设计。可以根据任务需求对模型进行定制化设计,如调整模型的层数、神经元数量、激活函数等。
    • 同时,考虑模型的可扩展性和灵活性,以便在后续的开发过程中进行调整和优化。

四、模型训练与优化

  1. 选择训练算法和优化器
    • 选择合适的训练算法和优化器,如随机梯度下降(SGD)、Adam 优化器等。不同的算法和优化器在收敛速度、稳定性和性能方面有所不同。
    • 根据模型的特点和数据的规模选择合适的训练算法和优化器,以提高训练效率和模型性能。
  2. 进行模型训练
    • 将预处理后的数据输入到模型中进行训练。在训练过程中,不断调整模型的参数,以最小化损失函数。
    • 可以采用分布式训练的方式,利用多台服务器进行并行训练,提高训练速度。同时,设置合适的训练参数,如学习率、批次大小、训练轮数等。
  3. 模型优化与调参
    • 在训练过程中,对模型进行优化和调参。可以采用正则化技术、数据增强、模型融合等方法,提高模型的泛化能力和性能。
    • 同时,通过调整模型的超参数,如学习率、层数、神经元数量等,找到最佳的模型配置。

五、模型评估与验证

  1. 选择评估指标
    • 根据应用场景和性能要求选择合适的评估指标,如准确率、召回率、F1 值、平均精度均值(mAP)等。
    • 确保评估指标能够客观地反映模型的性能和效果。
  2. 进行模型评估
    • 将测试数据输入到训练好的模型中,计算模型的评估指标。可以采用交叉验证、留出法等方法,确保评估结果的可靠性。
    • 分析评估结果,找出模型存在的问题和不足之处,以便进行进一步的优化和改进。
  3. 模型验证与确认
    • 对优化后的模型进行验证和确认,确保模型在实际应用中的性能和效果符合预期。可以采用实际应用场景中的数据进行测试,或者与其他已有的模型进行比较。
    • 如果模型性能不满足要求,需要重新进行模型设计、训练和优化,直到达到预期的效果。

六、模型部署与应用

  1. 选择部署方式
    • 根据应用场景和需求选择合适的模型部署方式,如云端部署、本地部署、边缘部署等。
    • 不同的部署方式具有不同的特点和优势,需要根据实际情况进行选择。例如,云端部署具有高可用性和可扩展性,但可能存在网络延迟问题;本地部署则可以提供更好的性能和隐私保护。
  2. 进行模型部署
    • 将训练好的模型部署到相应的平台上,并进行必要的配置和优化。确保模型能够稳定运行,并与其他系统进行良好的集成。
    • 可以采用容器化技术、自动化部署工具等,提高部署效率和可靠性。
  3. 模型应用与监控
    • 在实际应用中,对模型进行监控和维护,确保模型的性能和效果始终保持在良好状态。可以采用性能监控工具、日志分析等方法,及时发现和解决问题。
    • 同时,根据用户的反馈和实际应用情况,不断对模型进行优化和改进,以提高用户体验和满意度。

prompt工程

重要性

Prompt 工程对于大模型具有极其重要的意义。Prompt 工程在充分发挥大模型的潜力、提高其性能和应用价值、满足用户需求等方面都起着至关重要的作用,是大模型开发和应用中不可或缺的环节。 主要体现在以下几个方面:

一、引导模型生成准确有用的回答

  • 明确任务和意图
    通过精心设计的 Prompt,能够清晰地向大模型传达用户的任务和期望,避免模型产生模糊或不相关的回答。
  • 聚焦重点
    帮助大模型将注意力集中在关键信息上,减少无关内容的生成。

二、提升模型的性能和效率

  • 优化资源利用
    恰当的 Prompt 可以使模型更有效地利用计算资源,减少不必要的计算和生成过程。避免模型在宽泛的范围内搜索答案,节省时间和计算成本。
  • 提高准确率和召回率
    经过精心构建的 Prompt 能够引导模型在特定领域或任务中表现更出色,提高准确率和召回率。

三、拓展模型的应用场景

  • 适应新任务和领域
    通过设计创新的 Prompt,可以使大模型应用于原本不擅长的任务和领域。
  • 定制化服务
    根据不同用户的需求和场景,定制个性化的 Prompt,实现多样化的应用。

四、增强用户体验和满意度

  • 更贴合用户需求
    使模型的输出更符合用户的具体需求和偏好,提高用户对模型的满意度。
  • 提高交互流畅性
    有助于建立更流畅、自然的人机交互过程,增强用户与模型的沟通效果。使模型的回答更易于理解和接受,提升用户体验。

主流prompt工程

请添加图片描述

一、零样本提示(Zero-shot Prompting)

  • 用清晰简洁的语言向模型描述任务,不提供示例。
    例如:“请为我生成一篇关于环保的议论文。”

二、少样本提示(Few-shot Prompting)

  • 提供示例:给出几个与任务相关的示例,帮助模型理解任务模式和要求。
    比如:“以下是几个动物的描述:猫是一种可爱的宠物,喜欢追逐毛线球。狗是人类忠诚的伙伴,善于看家护院。请描述一下兔子。”

三、思维链提示(Chain-of-Thought Prompting)

  • 引导推理过程:鼓励模型逐步展示其思考和推理的步骤。
    例如:“要解决这个数学问题,我们先分析题目条件,然后逐步计算。请计算 3 + 5 = ?”

四、指令提示(Instruction Prompting)

  • 明确具体指令:清晰地给出一系列具体的操作指令。
    比如:“请按照以下步骤完成文本分类任务:首先,分析文本的主题;其次,根据预设的类别进行匹配;最后,给出分类结果。”

五、角色提示(Role Prompting)

  • 设定角色:为模型设定一个特定的角色,使其以该角色的身份进行回答。
    例如:“假设你是一位历史老师,为学生讲解唐朝的文化。”

六、对比提示(Contrastive Prompting)

  • 进行对比分析:要求模型对不同的选项或情况进行对比和分析。
    比如:“比较苹果和香蕉在营养成分和口感上的差异。”

Agent

基本知识

Agent 是能够感知其环境,并在该环境中自主行动,以实现一系列目标的实体。
Agent = Model + Memory + Planning + Tools
请添加图片描述
特点:
自主性:能够独立做出决策和采取行动,无需持续的人类干预。
感知能力:可以通过传感器或接口获取环境中的信息。
学习能力:能够从与环境的交互中学习,改进其行为策略。
目标导向:具有明确或隐含的目标,并努力实现这些目标。

Embedding模型

Embedding 模型是一种将高维稀疏数据(如文本、图像、音频等)映射到低维连续向量空间的技术。
在这里插入图片描述
以下是 Embedding 模型的一些关键特点和重要方面:

特点

  • 降维表示:将复杂的、高维度的数据转换为低维度的密集向量,大大降低了数据的复杂度。
  • 语义表示:生成的向量能够捕捉数据中的语义信息,相似的对象在向量空间中距离较近。
  • 连续性:向量的数值是连续的,便于进行数学计算和模型处理。

用途

  • 自然语言处理:
    词嵌入(Word Embedding):将单词表示为向量,常用于文本分类、情感分析、机器翻译等任务。
    句子嵌入(Sentence Embedding):对句子进行向量化,以比较句子之间的相似度或进行文本聚类
    在这里插入图片描述

  • 图像识别:将图像的特征嵌入到向量中,用于图像分类、目标检测等。
    在这里插入图片描述

  • 推荐系统:对用户和物品进行嵌入,计算它们之间的相似度以实现精准推荐。
    在这里插入图片描述

常见模型

  • Word2Vec:包括 CBOW(Continuous Bag-of-Words)和 Skip-gram 两种模型结构。
  • GloVe(Global Vectors for Word Representation):基于全局词共现统计的词嵌入模型。
  • FastText:能够处理生僻词和 OOV(Out Of Vocabulary)词。

内容参考–>神经网络算法 - 一文搞懂Embedding(嵌入)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值