为啥我敢说Python是数据分析界的扛把子语言?

本文探讨了Python在数据分析领域的优势,包括丰富的第三方库、JupyterNotebook的便利性以及易学特性。作者通过比较Python与其他编程语言的代码示例,强调了Python在数据处理、可视化和机器学习方面的高效性和简洁性。
摘要由CSDN通过智能技术生成

首先声明下这篇文字不是卖课的,也不是无脑吹Python,咱只讲事实,认认真真讨论下Python是不是数据分析领域最好的语言。

因为我在知乎上看到非常多人在问这个问题,想必大家是关心的。我的观点是,目前来看所有编程语言里,做数据分析Python是最好的选择,没有之一。

列举几个事实:

1、Kaggle、天池等数据比赛用的最多的语言是Python,其次是R语言。

2、最新4月TIOBE编程语言排名,Python断层第一,流行度16.41%,第二是C语言,约10.21%。

3、NASA处理黑洞图片所用的工具是Python,Python在NASA内部被广泛用于航天数据处理分析。

4、Chatgpt算法和后端大规模使用Python,其官方接口就有Python api。

Python作为数据分析的热门语言有它的必然性,我理解有三个方面原因。

一、Python拥有大量数据科学第三方库

这些第三方库拿来即用,广泛用于数学计算、数据处理、数据建模、数据可视化、机器学习等等,极大的节省了数据分析的软硬件成本。

  • pandas:python中的Excel,用于数据处理、分析,非常方便。

  • numpy:用于数组计算的库,大部分机器学习、深度学习都基于numpy。

  • scipy:用于数学和工程计算的库,堪比Matlab。

  • Scikit-Learn:集合了几乎所有机器学习模型的库,拿来即用,非常方便。

  • Matplotlib:用于绘制可视化图表的库,没有什么是它画不了的图。

其他的就更多了,不一一赘述。

二、Python有Jupyter notebook这样专门用于数据科学的开发平台

Kaggle、天池就是基于notebook提供数据分析服务,很多公司的数据分析平台也是基于notebook,搭建在私有或公有云上。

Jupyter是集编程、笔记、数据分析、机器学习、可视化、教学演示、交互协作等于一体的超级web应用,而且支持python、R、Julia、Scala等超40种语言。

虽然说支持这么多语言,但Python是Jupyter最好的搭档,因为Python有IPython。Jupyter最大的特点是代码即写可即运行,其可被应用于全过程计算:开发、文档编写、运行代码和展示结果。

比如我用matplotlib绘制一张曲线图,只需要输入脚本代码并执行,便可以在Jupyter上显示相应图表。

Jupyter中所有交互计算、编写说明文档、数学公式、图片以及其他富媒体形式的输入和输出,都是以文档的形式体现的。

这些文档是保存为后缀名为.ipynb的JSON格式文件,不仅便于版本控制,也方便与他人共享。

此外,文档还可以导出为:HTML、LaTeX、PDF等格式。

Jupyter还支持安装插件,和VsCode类似。插件类型也很丰富,包括了代码调试、可视化、文本编辑等等。

既然同样是编程工具,那Jupyter和Pycharm、VsCode的使用场景有什么区别呢?

Jupyter主要是用来做数据科学,其包含数据分析、数据可视化、机器学习、深度学习、机器人等等,任何Python数据科学第三方库都能在Jupyter上得到很好的应用和支持。

现在几乎所有的数据比赛平台都以Jupyter作为编辑工具,在上面实现各种数据分析场景。

在产品上,Jupyter不仅有简洁的Notebook ,还有工作台式的Lab,甚至线上平台化部署的Hub,对个人、团队、企业都可以完美支持。

三、最重要的原因,Python易学、易用、易读

这实在太关键了,做数据分析不会太去关注编程语言本身的复杂特性,越是简单越有利于提高效率。

首先,我不需要关注代码的细节,比如申明类型、编译、调试等,因为我只是用来分析处理数据,又不要开发大型软件,运行他个十几年。

其次能用第三方库,就不需要自己去开发工具,能极大地提升数据分析效率。

只要结果完美,其他的并不重要。

Python就是有这样的优势,代码简洁,有上千个数据科学相关第三方库供你使用。

所以相比其他语言,python最大程度上降低了使用门槛。

比如说构建一个简单的分类模型。

这是Python代码:

import numpy as np  
from sklearn.model_selection import train_test_split  
from sklearn.linear_model import LogisticRegression  
from sklearn import metrics  
  
# 示例数据  
X = np.array([[1, 2], [2, 3], [3, 1], [2, 1], [3, 3], [4, 4], [5, 5]])  
y = np.array([0, 0, 1, 1, 0, 1, 1])

# 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)  
# 创建逻辑回归模型  
model = LogisticRegression()  
# 训练模型  
model.fit(X_train, y_train)  
# 预测测试集  
y_pred = model.predict(X_test)  
# 评估模型  
print("Accuracy:", metrics.accuracy_score(y_test, y_pred))  
这是Java代码:

这是Java代码:


import weka.classifiers.Classifier;  
import weka.classifiers.functions.SMO;  
import weka.core.Instances;  
import weka.core.converters.ConverterUtils.DataSource;  
  
public class ClassificationExample {  
    public static void main(String[] args) throws Exception {  
        // 加载数据  
        DataSource source = new DataSource("data.csv");  
        Instances data = source.getDataSet();  
        // 设置类别索引(通常是最后一列)  
        if (data.classIndex() == -1)  
            data.setClassIndex(data.numAttributes() - 1);  
        // 构建分类器(这里使用SMO,一种支持向量机算法)  
        Classifier cls = new SMO();  
        // 训练模型  
        cls.buildClassifier(data);  
        // 测试模型  
        double[] testInstance = {4.5, 4.5}; // 一个新的测试实例  
        Instances test = new Instances(data, 1); // 创建一个只包含一个实例的数据集  
        test.add(testInstance);  
        // 对测试实例进行分类  
        double predictedClass = cls.classifyInstance(test.firstInstance());  
        String className = data.classAttribute().value((int) predictedClass);  
        // 输出预测结果  
        System.out.println("Predicted class for instance [4.5, 4.5]: " + className);  
    }  
}

这是C++代码:


import weka.classifiers.Classifier;  
import weka.classifiers.functions.SMO;  
import weka.core.Instances;  
import weka.core.converters.ConverterUtils.DataSource;  
  
public class ClassificationExample {  
    public static void main(String[] args) throws Exception {  
        // 加载数据  
        DataSource source = new DataSource("data.csv");  
        Instances data = source.getDataSet();  
          
        // 设置类别索引(通常是最后一列)  
        if (data.classIndex() == -1)  
            data.setClassIndex(data.numAttributes() - 1);  
          
        // 构建分类器(这里使用SMO,一种支持向量机算法)  
        Classifier cls = new SMO();  
          
        // 训练模型  
        cls.buildClassifier(data);  
          
        // 测试模型  
        double[] testInstance = {4.5, 4.5}; // 一个新的测试实例  
        Instances test = new Instances(data, 1); // 创建一个只包含一个实例的数据集  
        test.add(testInstance);  
          
        // 对测试实例进行分类  
        double predictedClass = cls.classifyInstance(test.firstInstance());  
        String className = data.classAttribute().value((int) predictedClass);  
          
        // 输出预测结果  
        System.out.println("Predicted class for instance [4.5, 4.5]: " + className);  
    }  
}

对比下,很明显地能看出来,Python代码会更加简洁,少了很多语法上的规则限制,其第三方库的使用也更加容易。

综上来说,从事数据分析想要选一个编程语言,Python是最好的选择,会让你少走一些弯路。

关于Python学习指南

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、自动化办公等学习教程。带你从零基础系统性的学好Python!

👉Python所有方向的学习路线👈

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取)

在这里插入图片描述

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python70个实战练手案例&源码👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉Python大厂面试资料👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

在这里插入图片描述

在这里插入图片描述

👉Python副业兼职路线&方法👈

学好 Python 不论是就业还是做副业赚钱都不错,但要学会兼职接单还是要有一个学习规划。

在这里插入图片描述

👉 这份完整版的Python全套学习资料已经上传,朋友们如果需要可以扫描下方CSDN官方认证二维码或者点击链接免费领取保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值