一、算力成为战略资源和科技竞争焦点
背景信息:
- 随着人工智能大模型等应用的爆发式发展,智能算力需求激增。
- 主要国家高度关注算力互联,并开展多方探索,算力已成为战略资源和科技竞争焦点。
具体表现:
- 全球算力发展:据《2024全球数字经济白皮书》显示,主要国家如美国、中国、德国、日本、韩国等数字经济持续快速发展,算力作为支撑其数字经济发展的重要基础,受到高度重视。
- 中国算力建设:截至2024年5月,我国已建成全球规模最大的5G网络,5G基站总数达383.7万个。在算力基础设施方面,工业和信息化部等部门联合印发的《算力基础设施高质量发展行动计划》提出,到2025年算力规模将超过300EFLOPS,智能算力占比达到35%。
二、大模型推动产业数智化变革
应用实践:
- 大模型应用与智能算力的结合正在推动各产业的数智化变革。例如,在WAVE SUMMIT深度学习开发者大会2024上,神州鲲泰展示了其基于“鲲鹏+昇腾”处理器的AI智算基础设施解决方案,该方案广泛应用于深度学习、模型开发服务场景,并成功支撑了平安城市、能源行业智能巡检、区域超算中心建设等多个领域的数字化转型。
产业影响:
- 预计2024年,工业互联网产业规模将超过1.5万亿元,保持13%左右的增长速度。这表明大模型与智能算力在推动产业数字化进程中发挥着重要作用。
三、算力管理与训练成本的挑战与解决方案
挑战:
- 随着大模型参数量的增加,算力管理变得日益复杂,训练成本也显著上升。例如,GPT-3.5需要1750亿参数和500个英伟达GPU卡,而更高级的模型如GPT-5可能需要10万亿参数和50万张英伟达GPU卡。
解决方案:
- 云原生技术凭借其高可用、弹性、可扩展等优势成为突破AI困境的关键。云原生PaaS平台的大模型产品工具链不断完善,将加速大模型技术在行业应用中落地。通过云原生技术,企业可以屏蔽底层算力的差异,实现跨域算力资源的有效管理和利用,从而降低成本并提高效率。
四、总结与展望
- 算力和大模型作为当前科技领域的热点话题,正深刻改变着各行各业的发展格局。随着技术的不断进步和应用场景的不断拓展,算力将成为支撑数字经济发展的重要基石。
- 同时,面对算力管理与训练成本的挑战,云原生等新技术将发挥关键作用,推动大模型技术在更多领域实现落地应用。未来,随着算力基础设施的不断完善和智能算力的持续提升,我们有理由相信数字经济将迎来更加广阔的发展空间。