
大模型
文章平均质量分 78
算力资源比较多
算力提供商,提供英伟达A100、A800、H100、H800、4090等算力卡服务,华为昇腾910B算力服务,现有算力2000P,在建算力4000多P,有需要的来电/微信:15110263665
展开
-
通过英伟达业绩确定人工智能产业发展
英伟达凭借其强大的技术实力和产品线,在AI领域取得了显著的优势,推动了其业绩的快速增长。发展前景:随着人工智能技术的不断发展和应用领域的拓展,英伟达作为领先的AI芯片提供商,其业绩有望继续保持增长态势。业绩展望:英伟达预计其第四财季营收为375亿美元,上下浮动约为2%,高于分析师普遍预期的370.8亿美元,但不及分析师的最高预期410亿美元。英伟达积极构建AI生态系统,与合作伙伴共同推动AI应用的发展。数据中心业务:营收为308亿美元,超出市场预期的288.2亿美元,同比增长显著,是英伟达的主要营收来源。原创 2024-11-21 09:13:11 · 816 阅读 · 0 评论 -
生成式大模型未来发展前景
综上所述,生成式大模型具有广阔的发展前景。随着AI+教育政策的出台和教育财政支出的稳定增长,生成式大模型在教育产业的应用将更加广泛,推动教育行业的数字化转型和智能化升级。未来,随着技术的不断进步,生成式大模型在新闻、广告、客服等行业的应用将更加广泛,进一步提升工作效率并降低人力成本。生成式大模型具有很强的可扩展性,能够通过增加训练数据、调整模型参数等方法,不断提升生成数据的品质和数量。在艺术创作、科学研究等领域,生成式大模型的应用为人们提供了全新的视角和思路,推动了相关领域的发展和创新。原创 2024-11-20 09:53:25 · 1048 阅读 · 0 评论 -
多模态大模型在办公领域的应用
它们能够处理多种类型的数据,实现智能化的文档处理、会议管理、项目管理、客户服务、创意设计和数据分析等功能,为办公人员提供更加全面、高效和个性化的服务。智能化与人性化的结合:在构建数字员工平台时,需要注重智能化与人性的结合,确保数字员工能够提供更加贴心和个性化的服务,从而提升客户满意度和忠诚度。语言翻译:对于需要翻译的文件,多模态大模型可以实现即时、准确的翻译,支持多种语言之间的转换,消除语言障碍。可视化呈现:根据数据的特点和分析需求,模型可以生成直观、易懂的图表和报告,帮助用户更好地理解数据。原创 2024-11-18 10:50:24 · 910 阅读 · 0 评论 -
大模型带给人类生活上的巨大变化吗
此外,大模型的应用也可能导致一些传统行业的转型和变革,需要政府和企业提供必要的支持和引导,帮助受影响的行业和个人适应新的生活方式和工作环境。同时,在智慧城市中,大模型可以整合交通、能源、环境等多方面的数据,实现城市的智能化管理和优化,提高居民的生活质量。因此,在享受大模型带来的便利和好处的同时,也需要密切关注其可能带来的负面影响,并采取适当的措施来应对这些挑战。例如,在金融领域,大型语言模型可以分析财务报表,提供投资建议,而在制造业中,机器人和自动化系统则能够执行精密的制造任务。原创 2024-11-13 10:49:26 · 1020 阅读 · 0 评论 -
算力市场未来市场真的是非常有潜力吗
人工智能技术的快速发展,特别是大模型、多模态模型等的应用,对算力的需求呈现出爆发式增长。模型训练需要处理海量的数据集,并进行复杂的计算,这要求算力系统能够提供高速、高效的计算能力。此外,量子纠缠是量子计算的另一重要特性,它允许对其中一个量子比特的操作立即影响到其他量子比特,显著增强了计算的并行能力。此外,一体化智算服务将成为主流,实现算力、算法和数据的高效协同,满足智算应用场景的数据处理、存储、传输等环节要求。随着AI技术的不断发展,模型的复杂度也在不断增加,从而进一步推动了算力需求的增长。原创 2024-11-12 10:17:03 · 750 阅读 · 0 评论 -
英伟达GB200、B200、H200、H100、A100、4090的参数对比
高容量显存:H200是H100的升级款产品,主要升级了GPU显存。采用了HBM3e显存技术,显存容量和带宽都有所提升,为AI和高性能计算提供了更强的支持。先进封装工艺:英伟达Blackwell系列是第一个使用台积电CoWoS-L封装工艺的芯片,GB200作为该系列的一员,具有出色的性能和功耗表现。高容量显存:RTX 4090配备了GDDR6X显存,提供了快速的数据传输速度,满足高端游戏和图形处理的需求。高性能存储:A100配备了高容量的HBM2e显存和高速的数据传输接口,提供了强大的存储和数据处理能力。原创 2024-11-07 11:15:58 · 15206 阅读 · 0 评论 -
机器学习——Machine Learning
Machine Learning(机器学习)的自动化。原创 2024-10-28 11:51:32 · 1224 阅读 · 0 评论 -
人工智能将赋能人类更多便捷
在人机协同的模式下,人类可以充分发挥自身的创造力、想象力以及人际交往能力,与AI形成互补,共同解决复杂问题,创造更大的价值。随着AI技术的普及和应用,一些传统岗位的技能要求发生变化,但同时也为从业者提供了职业转型的机遇。推动产业升级和创新:AI技术推动了相关产业的发展,如智能家居、无人驾驶、虚拟现实等,进一步扩大了就业市场,为劳动者提供了更多的选择。加强教育培训:政府和企业应加大在教育培训方面的投入,为从业者提供必要的技能和知识培训,帮助他们适应新的工作环境和市场需求。原创 2024-10-23 12:01:19 · 804 阅读 · 0 评论 -
从单模态模型转换到多模态大模型
多模态模型在多个领域都有广泛应用。此外,多模态数据处理还需要整合跨领域的知识,例如结合医疗影像数据、病历文本数据和生理参数数据来进行疾病诊断和预测,如何有效整合不同领域的信息并进行交叉验证也是一个挑战。研究者们通常首先在大规模的数据集上训练所谓的骨干模型,然后在新的任务上对骨干网络的参数或者结构进行微调,从而使模型在新的任务上加速收敛并且达到较好的泛化效果。需要找到一种合适的方式来表示多模态数据的共性和差异性,这可能涉及到对不同类型数据的统一表示,或者通过深度学习的方式来进行端到端的表示学习。原创 2024-10-17 10:23:59 · 1366 阅读 · 0 评论 -
全球未来所需的算力规模
同时,新一代的AI芯片,如GPU、ASIC、FPGA和NPU等,提供了更高效的计算能力和更低的能耗,加速了AI算力的发展。:随着AI技术的不断进步和广泛应用,特别是在自动驾驶、智能医疗、智能制造等领域,对算力的需求将呈现爆发式增长。:中美两国在全球算力市场中占据主导地位,两国的算力规模份额接近,竞争激烈。然而,随着全球算力需求的增加,其他国家也在积极发展自身的算力产业,以提升在全球数字经济中的竞争力。全球未来所需的算力规模,以支撑人工智能(AI)的发展,将是一个极为庞大的数字,并且这一需求将持续增长。原创 2024-10-11 09:59:49 · 1245 阅读 · 0 评论 -
通过人工智能AI大模型定制的完美旅游行程
在这个科技日新月异的时代,人工智能(AI)已经悄然渗透到我们生活的方方面面,其中,AI大模型的应用更是为旅游行业带来了前所未有的变革。想象一下,只需简单输入你的旅行偏好、预算范围、时间限制以及任何特殊需求,一个强大的AI大模型就能为你量身定制一场无与伦比的旅行体验,从行程规划到细节安排,无一不体现出智能化与个性化的完美结合。下午,你将漫步在丽江古城,AI推荐的路线不仅涵盖了古城的核心景点,如四方街、木府,还巧妙地穿插了几家口碑极佳的咖啡馆和小吃店,让你在享受美景的同时也能品尝到地道的纳西美食。原创 2024-09-29 09:51:39 · 2047 阅读 · 0 评论 -
国内人工智能AI头部公司32家(包括详细技术、特点和综合实力)
特点:百度以搜索引擎起家,逐渐将AI技术应用于搜索、自动驾驶、智能硬件等多个领域,形成了完整的AI生态体系。特点:滴滴AI通过大数据和机器学习等技术,优化了出行服务的调度和匹配效率,提升了用户的出行体验。云从科技作为人脸识别领域的佼佼者,其生态系统内可能还包括一些专注于特定AI技术的子公司或关联企业,这些企业在各自的领域内也具有一定的市场影响力和技术实力。特点:阿里云不仅集成了深度学习、自然语言处理、计算机视觉等前沿技术,还通过不断优化算法和定制化服务,为电商、金融、物流等多个行业提供了智能化的解决方案。原创 2024-09-23 10:02:06 · 51277 阅读 · 0 评论 -
人工智能(AI)正在以前所未有的速度融入我们生活的方方面面
AI可以通过分析海量的医疗数据,辅助医生做出更准确的诊断,同时,它还能在药物研发和临床试验中发挥重要作用,加速新药的研发进程。AI影像诊断系统:多家医疗机构采用基于深度学习的AI影像诊断系统,用于辅助医生分析CT、MRI等医学影像,高效识别肺结节、脑出血、乳腺癌等疾病的迹象,提高诊断速度和准确性。个性化教学:AI技术可以根据学生的学习情况和兴趣偏好,为其量身定制学习计划和教学资源,如德国国际应用科学大学开发的AI视频制作引擎,为学生提供个性化的学习视频。原创 2024-09-13 14:19:02 · 1468 阅读 · 0 评论 -
讲解GPU 训练大模型步骤
详细讲解GPU 在训练大模型工作步骤过程GPU在训练大模型的工作过程中,扮演着至关重要的角色,其强大的并行计算能力能够显著提升训练速度和效率。以下是GPU训练大模型的详细步骤:原创 2024-09-11 17:46:10 · 1693 阅读 · 0 评论 -
AI人工智能将推动人类发展
AI人工智能将推动人类发展:AI技术的广泛应用,特别是通过网络技术,可以将优质的教育资源传递到偏远地区,弥补地域差异所带来的学习机会不均。此外,AI还可以辅助科学家进行未知领域的探索,通过自主学习和迭代优化,发现新的科学现象和规律。AI技术,特别是深度学习和自然语言处理技术,能够对海量文献和研究资料进行分析和挖掘,帮助研究人员发现新的理论假设或领域间的联系。AI(人工智能)作为一种前沿技术,正以前所未有的速度改变着我们的世界,并在多个领域展现出巨大的潜力,这些潜力无疑将推动人类社会的发展。原创 2024-09-09 11:01:51 · 1608 阅读 · 0 评论 -
人工智能在行业中的应用
人工智能在行业中的应用:数据处理与分析:利用计算机视觉、机器学习等技术,对传感器收集到的数据进行处理和分析,实现对车辆周围环境的精准感知。人工智能(AI)作为当前科技领域的热点,其在各行业中的应用日益广泛,深刻改变着传统行业的运作模式,并推动着社会经济的持续进步。智能诊断:通过分析患者的病历、影像等大量数据,进行快速、准确的诊断,如通过AI分析CT扫描、MRI等医学影像,诊断肿瘤、脑血管等疾病。应用场景:自动驾驶汽车借助先进的传感器、高精度地图、强大的计算能力和深度学习算法,实现安全、高效的自动驾驶。原创 2024-09-06 13:23:51 · 3143 阅读 · 0 评论 -
人工智能工作历程 人工智能发展现状 人工智能未来发展趋势
人工智能工作历程 人工智能发展现状 人工智能未来发展趋势原创 2024-09-05 09:57:18 · 1542 阅读 · 0 评论 -
人工智能大模型工作原理(包括数据收集与预处理、大模型训练、大模型部署与应用)
人工智能大模型工作原理(包括数据收集与预处理、大模型训练、大模型部署与应用)原创 2024-09-03 10:50:26 · 2391 阅读 · 0 评论 -
国内外大模型汇总(包括科大星火、文心一言、通义千问、智普清言、华为大模型)
国内外大模型汇总(包括科大星火、文心一言、通义千问、智普清言、华为大模型)原创 2024-08-30 10:05:54 · 3760 阅读 · 0 评论 -
国内算力建设详细数据
国内算力建设详细数据,包括北京、广东、深圳、上海、重庆、山东等原创 2024-08-28 17:25:41 · 1296 阅读 · 0 评论 -
OpenAI的GPT-4模型详细介绍:研发能力、应用场景、开发的合作、持续投入
OpenAI的GPT-4模型详细介绍:研发能力、应用场景、开发的合作、持续投入原创 2024-08-27 10:16:22 · 2092 阅读 · 0 评论 -
自然语言处理(NLP)大模型
自然语言处理(NLP)领域中的一种重要技术,具有强大的语言理解和生成能力。以下是对NLP大模型的详细介绍:原创 2024-08-21 11:55:13 · 1974 阅读 · 0 评论 -
国内外大模型汇总:Open AI大模型、Google大模型、Microsoft大模型、文心一言大模型、通义千问大模型、字节豆包大模型、智普清言大模型
国内外大模型汇总:Open AI大模型、Google大模型、Microsoft大模型、文心一言大模型、通义千问大模型、字节豆包大模型、智普清言大模型原创 2024-08-19 12:01:09 · 2824 阅读 · 0 评论 -
大模型应用——智能客服、机器翻译、文本生成、情感分析、问答系统、金融行业、电商、教育、医疗健康、个性化推荐、图像处理、视频处理、自动驾驶
大模型应用——智能客服、机器翻译、文本生成、情感分析、问答系统、金融行业、电商、教育、医疗健康、个性化推荐、图像处理、视频处理、自动驾驶原创 2024-08-16 14:47:40 · 1230 阅读 · 0 评论 -
行业大模型:信用评分大模型、生产优化大模型、库存管理大模型、物流行业大模型、零售行业大模型
行业大模型:信用评分大模型、生产优化大模型、库存管理大模型、物流行业大模型、零售行业大模型原创 2024-08-15 12:00:20 · 812 阅读 · 0 评论 -
大模型汇总:文心一言大模型、腾讯混元大模型、通义千问大模型、字节豆包大模型、智普清言大模型、KIMI 大模型、紫东太初大模型、讯飞星火大模型
大模型汇总:文心一言大模型、腾讯混元大模型、通义千问大模型、字节豆包大模型、智普清言大模型、KIMI 大模型、紫东太初大模型、讯飞星火大模型原创 2024-08-14 12:00:57 · 2526 阅读 · 0 评论 -
多模态大模型——多模态大模型技术特点、多模态大模型应用场景、多模态大模型案例、多模态大模型面临挑战
多模态大模型——多模态大模型技术特点、多模态大模型应用场景、多模态大模型案例、多模态大模型面临挑战原创 2024-08-13 09:46:53 · 3766 阅读 · 0 评论 -
大模型现状详细介绍
大模型现状详细介绍:包括技术、问题、未来发展原创 2024-08-12 10:18:16 · 2191 阅读 · 0 评论 -
大模型数据是大模型的基础核心
这包括数据清洗(去除重复数据、处理缺失值、处理异常值等)、数据格式化(将数据转换为适合分析的格式)、数据归一化/标准化(将数据转换到同一尺度上)等步骤。大模型通过分析用户的行为和兴趣,能够为用户提供个性化的推荐服务,如电商平台的商品推荐、视频平台的视频推荐等,提高了用户满意度和平台粘性。在收集数据之前,首先需要明确大模型的具体需求,包括所需数据的类型、规模、质量等。在金融领域,大模型可以通过分析大量的金融数据,识别潜在的欺诈行为和风险点,为金融机构提供风险预警和防控服务,保障了金融安全。原创 2024-08-09 09:01:37 · 914 阅读 · 0 评论 -
行业大模型——详细介绍
行业垂类模型行业垂类模型是指针对特定行业或领域而设计的人工智能模型,它们通过大量行业数据的训练,具备较高的专业性和针对性,能够更好地解决行业内的特定问题。以下是一个详细的构建行业垂类模型的步骤:行业垂类模型的需求原创 2024-08-08 10:08:47 · 2617 阅读 · 1 评论 -
大模型参数——详细介绍
大模型参数——详细介绍原创 2024-08-07 11:33:23 · 4612 阅读 · 0 评论 -
大模型详细介绍
大模型详细介绍:包括大模型工作原理、大模型应用领域、大模型优缺点原创 2024-08-05 10:23:48 · 1575 阅读 · 0 评论 -
大模型的架构参数是指定义模型基本结构和组成的各种参数,这些参数对模型的性能、训练效率和泛化能力具有重要影响。以下是对大模型架构参数的详细介绍
大模型的架构参数是指定义模型基本结构和组成的各种参数,这些参数对模型的性能、训练效率和泛化能力具有重要影响。以下是对大模型架构参数的详细介绍原创 2024-08-02 09:48:02 · 1377 阅读 · 0 评论 -
详细阐述大模型微调过程、方法、案例
大模型微调的优势在于能够充分利用预训练模型的通用特征,并在少量新数据的基础上快速适应新的任务需求。这些模型通过在大规模无标注数据集上进行预训练,学习到了丰富的语义信息和通用的特征表示,为后续的微调任务提供了坚实的基础。大模型微调正是为了满足这种需求而诞生的技术。通过微调,可以在保持预训练模型强大特征提取能力的同时,使模型更加适应新的任务或领域,从而提高模型的实用性和性能。LoRA是一种旨在微调大型预训练语言模型的技术,它通过引入小型、低秩的矩阵来实现模型行为的微调,而无需对整个模型结构进行大幅度修改。原创 2024-08-01 09:45:44 · 2222 阅读 · 0 评论 -
大模型预训练机器学习和深度学习领域中扮演着至关重要的角色
预训练的核心目标是通过在大规模数据集上的训练,使模型学习到数据的通用特征和规律。由于预训练模型已经具备了一定的泛化能力,因此在后续任务的微调过程中,可以减少训练时间和计算资源的消耗。此外,预训练模型还可以作为多个任务的基础模型进行共享,避免了重复训练相同底层结构的情况,进一步降低了训练成本。预训练大模型通过收集海量的训练数据,并经过复杂的训练过程,能够更充分地利用数据中蕴含的知识。相比于传统的从零开始训练模型的方式,预训练大模型能够更高效地利用数据资源,提高数据的利用效率。原创 2024-07-30 14:15:01 · 1403 阅读 · 0 评论 -
大模型基础——循环神经网络(RNN)
RNN的基本结构由输入层、隐藏层和输出层组成,但与其他神经网络不同的是,RNN在隐藏层中引入了循环连接,使得隐藏层的输出不仅与当前时刻的输入有关,还与前一时刻的隐藏状态有关。(3).隐藏层的计算通常可以表示为:ht=σ(Whhht−1+Wxhxt+bh),其中 Whh 是上一隐藏层到当前隐藏层的权重,Wxh 是输入层到隐藏层的权重,bh 是隐藏层的偏置项,σ 是激活函数。RNN的基本单元可以看作是一个简单的神经网络层,但它与普通的神经网络层的主要区别在于其隐藏层的状态是循环的。原创 2024-07-26 12:04:22 · 1403 阅读 · 0 评论 -
Meta发布Llama 3.1模型
Meta在Llama 3.1模型的训练和优化过程中采用了先进的算法和技术,确保了模型不仅在规模上有所突破,同时在训练效率和资源消耗上实现了平衡。通过开源模型,Meta致力于降低人工智能技术的准入门槛,使得更多来自不同背景的研究者和开发者能够参与进来,共同推动技术进步,实现人工智能的普惠化。这一特点不仅提升了模型的性能,也为研究者和开发者提供了更多的定制化空间。Llama 3.1在超过15万亿个token的数据上进行训练,这一数据量远超先前的LLaMA模型版本,显示了Meta在数据收集和处理方面的强大能力。原创 2024-07-24 09:09:29 · 1936 阅读 · 0 评论 -
深度学习模型Transformer结构
深度学习模型Transformer结构原创 2024-07-23 10:00:59 · 1438 阅读 · 0 评论 -
文心一言大模型
文心一言原创 2024-07-22 10:43:19 · 4303 阅读 · 3 评论 -
通用大模型详情总汇
通用大模型详情总汇原创 2024-07-19 15:28:35 · 1490 阅读 · 0 评论