Spark-Streaming简介 核心编程

1. Spark-Streaming概述

定义:用于处理流式数据,支持多种数据输入源,可运用Spark原语运算,结果能保存于多处。它以离散化流(DStream)为抽象表示,是RDD在实时数据处理场景的封装。

特点:易用,支持多语言编写实时计算程序;容错,可恢复丢失数据;易整合,能在Spark上运行,结合离线处理实现交互式查询。

2. Spark-Streaming架构:包含背压机制,1.5版本前靠设置静态参数限制Receiver数据接收速率,易导致资源利用率低。1.5版本起可动态调整,通过“spark.streaming.backpressure.enabled”控制,默认不启用。

3. DStream实操 - WordCount案例

 

 

 

 

 

1. RDD队列创建DStream:可利用 ssc.queueStream(queueOfRDDs) 创建DStream,队列中的每个RDD都会被当作一个DStream处理。


 

 

 2. 自定义数据源创建DStream:自定义数据源需继承Receiver并实现 onStart 、 onStop 方法。

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值