在数据分析领域,问卷收集的数据是重要信息源,Stata 则是强大的分析工具。数据描述作为数据分析的基础环节,能帮助我们快速了解数据基本特征,为后续深入分析做好准备。接下来,为大家详细介绍问卷与 Stata 应用中数据描述的入门知识。
一、数据描述的重要性
数据分析旨在回答研究问题,而数据描述是达成这一目标的关键起始点。当我们获取问卷数据后,需要先熟悉数据的特征、分布以及变量间的关系,才能确定是否要对数据进一步处理以及如何处理。
例如,在居民健康状况调查中,我们要先了解年龄、性别、健康自评等变量的基本情况,才能合理选择回归分析、相关性分析等后续分析方法。若跳过数据描述直接进行复杂分析,可能因数据不符合模型要求,导致结果不准确,出现 “垃圾进,垃圾出” 的情况。
二、变量类型及描述方法
(一)分类型变量
- 目标:分类型变量描述的主要目标是分析变量属性的分布情况,明确不同类别在总体中所占的比例。以性别变量为例,知晓样本中男性和女性的占比,有助于了解样本的性别结构。
- 数据要求:该方法适用于分类变量(定类与定序变量),如果是量表,级数最好不超过 7 级。对于数值变量,也可借助分类型变量描述方法查看其形态分布(如是否正态分布),比如将收入按区间分组转化为分类型变量来观察其分布。
- 实际操作:在 Stata 中,常用
tabulate
命令(可简写为tab
或tab1
)进行分类型变量描述。