在高等数学的学习中,三重积分是一个非常重要的内容,尤其在物理、工程等领域有着广泛的应用。本文将围绕长方体等简单区域上的三重积分计算进行详细讲解,并提供一些典型的例题和解题思路,帮助大家备战期末考试。
一、三重积分的基本概念
三重积分是对三维空间中的函数在某个三维区域上进行积分的过程,形式如下:
∭ Ω f ( x , y , z ) d V \iiint_{\Omega} f(x, y, z) \, dV ∭Ωf(x,y,z)dV
其中:
- f ( x , y , z ) f(x, y, z) f(x,y,z) 是被积函数;
- Ω \Omega Ω 是积分区域;
- d V = d x d y d z dV = dx\,dy\,dz dV=dxdydz 表示体积元素。
二、长方体区域上的三重积分
1. 区域描述
当积分区域为一个长方体时,其形式通常如下:
Ω : a ≤ x ≤ b , c ≤ y ≤ d , e ≤ z ≤ f \Omega: a \leq x \leq b,\quad c \leq y \leq d,\quad e \leq z \leq f Ω:a≤x≤b,c≤y≤d,e≤z≤f
此时三重积分可以写成三次累次积分的形式:
∭ Ω f ( x , y , z ) d x d y d z = ∫ e f ∫ c d ∫ a b f ( x , y , z ) d x d y d z \iiint_{\Omega} f(x, y, z) \, dxdydz = \int_{e}^{f} \int_{c}^{d} \int_{a}^{b} f(x, y, z) \, dx\,dy\,dz ∭Ωf(x,y,z)dxdydz=∫ef∫cd∫abf(x,y,z)dxdydz
也可以根据需要改变积分顺序,如先积 z z z,再积 x x x,最后积 y y y 等。
⚠️ 注意:积分顺序不影响最终结果,但会影响计算难度。
三、典型例题解析
例题1:
计算三重积分:
∭ Ω x y z d x d y d z \iiint_{\Omega} xyz \, dxdydz ∭Ωxyzdxdydz
其中 Ω \Omega Ω 是由 0 ≤ x ≤ 1 0 \leq x \leq 1 0≤x≤1, 0 ≤ y ≤ 2 0 \leq y \leq 2 0≤y≤2, 0 ≤ z ≤ 3 0 \leq z \leq 3 0≤z≤3 所围成的长方体区域。
解:
由于积分区域是标准长方体,可以直接写出累次积分: