一、前言
在高等数学的学习中,方向导数是一个非常重要的概念,它描述了函数在某一点沿着某一方向的变化率。本文将通过典型例题讲解如何计算方向导数,并总结解题思路与技巧,帮助大家掌握这一类题型的解法。
二、基本概念回顾
1. 方向导数定义
设函数 f ( x , y , z ) f(x, y, z) f(x,y,z) 在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0, y_0, z_0) P0(x0,y0,z0) 处可微,单位向量 l ⃗ = ( cos α , cos β , cos γ ) \vec{l} = (\cos\alpha, \cos\beta, \cos\gamma) l=(cosα,cosβ,cosγ) 表示一个方向,则函数在该点沿方向 l ⃗ \vec{l} l 的方向导数定义为:
∂ f ∂ l ∣ ( x 0 , y 0 , z 0 ) = ∇ f ( x 0 , y 0 , z 0 ) ⋅ l ⃗ = f x ( x 0 , y 0 , z 0 ) cos α + f y ( x 0 , y 0 , z 0 ) cos β + f z ( x 0 , y 0 , z 0 ) cos γ \frac{\partial f}{\partial l}\Big|_{(x_0,y_0,z_0)} = \nabla f(x_0, y_0, z_0) \cdot \vec{l} = f_x(x_0, y_0, z_0)\cos\alpha + f_y(x_0, y_0, z_0)\cos\beta + f_z(x_0, y_0, z_0)\cos\gamma ∂l∂f (x0,y0,z0)=∇f(x0,y0,z0)⋅l=fx(x0,y0,z0)cosα+fy(x0,y0,z0)cosβ+fz(x0,y0,z0)cosγ
其中:
- ∇ f = ( f x , f y , f z ) \nabla f = (f_x, f_y, f_z) ∇f=(fx,fy,fz) 是梯度;
- l ⃗ \vec{l} l 必须是单位向量。
注意:如果给出的方向不是单位向量,需要先将其单位化!
三、典型例题解析
例题1:
设函数 f ( x , y ) = x 2 + x y + y 3 f(x, y) = x^2 + xy + y^3 f(x,y)=x2+xy+y3,求函数在点 ( 1 , − 1 ) (1, -1) (1,−1) 沿方向 l ⃗ = ( 3 , 4 ) \vec{l} = (3, 4) l=(3,4) 的方向导数。
解题步骤:
步骤1:计算偏导数
f x = 2 x + y f y = x + 3 y 2 f_x = 2x + y \\ f_y = x + 3y^2 fx=2x+yfy=x+3y2
代入点 ( 1 , − 1 ) (1, -1) (1,−1) 得:
f x ( 1 , − 1 ) = 2 ( 1 ) + ( − 1 ) = 1 f y ( 1 , − 1 ) = 1 + 3 ( − 1 ) 2 = 1 + 3 = 4 f_x(1, -1) = 2(1) + (-1) = 1 \\ f_y(1, -1) = 1 + 3(-1)^2 = 1 + 3 = 4 fx(1,−1)=2(1)+(−1)=1fy(1,−1)=1+3(−1)2