在高等数学下册的期末考试中,幂级数的相关题目是重点考察内容之一。其中,“求幂级数的收敛域与和函数”这类题目综合性较强,既涉及级数敛散性的判断,又需要掌握和函数的求解方法。本文将通过一个典型例题来详细讲解此类问题的解法思路和步骤。
一、题目示例
求幂级数
∑ n = 1 ∞ ( x − 2 ) n n ⋅ 3 n \sum_{n=1}^{\infty} \frac{(x-2)^n}{n \cdot 3^n} n=1∑∞n⋅3n(x−2)n
的收敛域及其和函数。
二、第一步:求收敛域
1. 使用比值判别法
我们考虑一般项:
a n = ( x − 2 ) n n ⋅ 3 n a_n = \frac{(x-2)^n}{n \cdot 3^n} an=n⋅3n(x−2)n
使用比值判别法:
lim n → ∞ ∣ a n + 1 a n ∣ = lim n → ∞ ∣ ( x − 2 ) n + 1 ( n + 1 ) ⋅ 3 n + 1 ⋅ n ⋅ 3 n ( x − 2 ) n ∣ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-2)^{n+1}}{(n+1) \cdot 3^{n+1}} \cdot \frac{n \cdot 3^n}{(x-2)^n} \right| n→∞lim anan+1 =n→∞lim