数据结构期末复习:数组核心操作全解析(含代码实现与复杂度分析)
前言
在数据结构期末考试中,数组作为最基础、最常考的数据结构之一,其核心操作是高频考点。本文系统梳理了五大经典数组操作题型——合并、交并集、拆分、去重等,结合实验场景,提供完整 Java 代码实现、时间/空间复杂度分析及易错点提醒,助你高效备考,稳拿高分!
一、复习核心考点清单
- 两个有序数组合并(双指针经典应用)
- 无序集合的交集与并集(HashSet 去重特性)
- 有序集合的交集与并集(利用有序性优化)
- 字符数组拆分(数字/字母分类)
- 有序数组去重(两种时间复杂度算法对比)
二、各考点详细解析(含代码 + 思路)
考点1:两个有序数组合并
📌 题目要求
将两个非递减有序数组合并为一个新的非递减有序数组,要求时间复杂度最优。
💡 实现思路
- 核心算法:双指针法(避免冗余排序)
- 时间复杂度:
O(n + m) - 步骤:
- 处理边界情况(任一数组为空直接返回另一个)
- 初始化双指针
i,j和结果指针k - 比较元素,小者入结果数组,对应指针后移
- 将剩余未遍历元素全部追加
✅ 完整代码(Java)
public static int[] mergeSortedArrays(int[] arr1, int[] arr2) {
if (arr1 == null) return arr2;
if (arr2 == null) return arr1;
int[] result = new int[arr1.length + arr2.length];
int i = 0, j = 0, k = 0;
while (i < arr1.length && j < arr2.length) {
if (arr1[i] <= arr2[j]) {
result[k++] = arr1[i++];
} else {
result[k++] = arr2[j++];
}
}
while (i < arr1.length) result[k++] = arr1[i++];
while (j < arr2.length) result[k++] = arr2[j++];
return result;
}
⚠️ 期末易错点
- 忽略空数组边界条件(如
arr1 == null) - 结果数组长度错误(应为
arr1.length + arr2.length) - 遗漏处理剩余元素(导致部分数据丢失)
考点2:无序集合的交集与并集
📌 题目要求
给定两个可能含重复元素的无序数组,求交集(共同元素)和并集(所有元素去重)。
💡 实现思路
- 核心数据结构:
HashSet(自动去重 + O(1) 查询) - 交集:先存入 set1,再遍历 set2 筛选存在元素
- 并集:直接将两数组元素加入同一 HashSet
✅ 完整代码
// 交集
public static int[] findIntersection(int[] set1, int[] set2) {
Set<Integer> tempSet = new HashSet<>();
Set<Integer> intersectionSet = new HashSet<>();
for (int num : set1) tempSet.add(num);
for (int num : set2) {
if (tempSet.contains(num)) intersectionSet.add(num);
}
return intersectionSet.stream().mapToInt(Integer::intValue).toArray();
}
// 并集
public static int[] findUnion(int[] set1, int[] set2) {
Set<Integer> unionSet = new HashSet<>();
for (int num : set1) unionSet.add(num);
for (int num : set2) unionSet.add(num);
return unionSet.stream().mapToInt(Integer::intValue).toArray();
}
💡 提示:可使用
stream().mapToInt()简化数组转换(考试若限制 JDK 版本,可用传统循环)
📊 复杂度分析
| 操作 | 时间复杂度 | 空间复杂度 |
|---|---|---|
| 交集 | O(n + m) | O(n) |
| 并集 | O(n + m) | O(n + m) |
考点3:有序集合的交集与并集
📌 题目要求
两个非递减有序数组(可能含重复),求有序且无重复的交集与并集。
💡 实现思路
- 核心算法:双指针法(无需额外空间)
- 优势:利用有序性,避免使用 HashSet,空间复杂度 O(1)
✅ 完整代码
// 有序交集(去重)
public static int[] findSortedIntersection(int[] set1, int[] set2) {
List<Integer> res = new ArrayList<>();
int i = 0, j = 0;
while (i < set1.length && j < set2.length) {
if (set1[i] == set2[j]) {
if (res.isEmpty() || res.get(res.size() - 1) != set1[i]) {
res.add(set1[i]);
}
i++; j++;
} else if (set1[i] < set2[j]) {
i++;
} else {
j++;
}
}
return res.stream().mapToInt(Integer::intValue).toArray();
}
// 有序并集(去重)
public static int[] findSortedUnion(int[] set1, int[] set2) {
List<Integer> res = new ArrayList<>();
int i = 0, j = 0;
while (i < set1.length && j < set2.length) {
if (set1[i] < set2[j]) {
res.add(set1[i++]);
} else if (set1[i] > set2[j]) {
res.add(set2[j++]);
} else {
res.add(set1[i]);
i++; j++;
}
}
while (i < set1.length) res.add(set1[i++]);
while (j < set2.length) res.add(set2[j++]);
return res.stream().mapToInt(Integer::intValue).toArray();
}
🔥 期末高频考点
- 有序交集必须去重:即使输入有重复,输出只能保留一次
- 双指针移动逻辑:相等时同时移动,不等时移动较小者
- 对比无序解法:有序解法空间更优(O(1) vs O(n))
考点4:字符数组拆分(数字/字母分类)
📌 题目要求
将数组 {'1','g','3','4','e',...} 拆分为数字字符数组和字母字符数组,保持原顺序。
💡 实现思路
- 第一遍:统计数字和字母个数(确定结果数组长度)
- 第二遍:分别填充两个结果数组
- 注意:只处理
'0'-'9'和'a'-'z'/'A'-'Z'
✅ 完整代码
public static char[][] splitArrayA(char[] arr) {
int nums = 0, letters = 0;
for (char c : arr) {
if (c >= '0' && c <= '9') nums++;
else if ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')) letters++;
}
char[] numArr = new char[nums];
char[] letterArr = new char[letters];
int ni = 0, li = 0;
for (char c : arr) {
if (c >= '0' && c <= '9') {
numArr[ni++] = c;
} else if ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')) {
letterArr[li++] = c;
}
}
return new char[][]{numArr, letterArr};
}
⚠️ 易错点提醒
- 字符判断范围写错(如漏掉大写字母)
- 未先统计数量,直接创建固定长度数组 → 数组越界
- 存储指针未自增 → 元素被覆盖
考点5:有序数组去重(两种算法对比)
📌 题目要求
对非递减有序数组去重(保留唯一元素),实现两种不同复杂度的算法。
✅ 算法1:双指针法(推荐!)
- 时间复杂度:O(n)
- 空间复杂度:O(1)(原地修改)
- 适用:数组有序 + 要求空间优化
public static int[] removeDuplicatesByTwoPointers(int[] arr) {
if (arr == null || arr.length <= 1) return arr;
int slow = 0;
for (int fast = 1; fast < arr.length; fast++) {
if (arr[fast] != arr[slow]) {
arr[++slow] = arr[fast];
}
}
return Arrays.copyOf(arr, slow + 1);
}
✅ 算法2:LinkedHashSet 法
- 时间复杂度:O(n)
- 空间复杂度:O(n)
- 优点:代码简洁,自动去重 + 保序
public static int[] removeDuplicatesByHashSet(int[] arr) {
Set<Integer> set = new LinkedHashSet<>();
for (int x : arr) set.add(x);
return set.stream().mapToInt(Integer::intValue).toArray();
}
📊 算法对比表
| 算法 | 时间复杂度 | 空间复杂度 | 是否原地 | 适用场景 |
|---|---|---|---|---|
| 双指针法 | O(n) | O(1) | ✅ | 有序数组、内存受限 |
| HashSet 法 | O(n) | O(n) | ❌ | 无序也可用、追求开发效率 |
💡 考试重点:理解“空间换时间” vs “时间换空间”的设计哲学!
三、期末复习总结
✅ 四大核心思想:
- 有序性是优化关键:能用双指针就别用 HashSet
- 双指针是数组操作的万金油:合并、去重、交并集都能用
- 边界条件必检查:空数组、单元素、全重复等
- 复杂度要会分析:时间 vs 空间权衡是高频简答题
✅ 三大易错雷区:
- 数组越界(长度计算错误、指针未移动)
- 忘记去重(尤其有序交集)
- 字符判断逻辑不全(大小写、数字范围)
✅ 代码规范建议:
- 方法命名清晰(如
mergeSortedArrays) - 添加必要注释(考试阅卷加分项)
- 处理
null输入(体现健壮性)
四、完整测试代码(一键运行)
import java.util.*;
public class ArrayFinalReview {
public static void main(String[] args) {
System.out.println("===== 数组核心操作测试 =====");
testMerge();
System.out.println("------------------------------");
testUnorderedSet();
System.out.println("------------------------------");
testSortedSet();
System.out.println("------------------------------");
testSplit();
System.out.println("------------------------------");
testRemoveDuplicates();
}
// 此处粘贴上述所有方法(略,实际使用时补全)
}
结语
掌握这五大核心操作,你就已经覆盖了期末数组题型的 90%!建议动手敲一遍代码,理解每一步的逻辑,尤其是双指针的移动规则和去重时机。祝大家期末稳过,高分上岸!🎉
📌 关注我,获取更多数据结构 & 算法期末复习干货!
965

被折叠的 条评论
为什么被折叠?



