【算法笔记】有人看海,有人被爱,有人做不出 leetcode 第一题(二叉树专题 Part 5)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


Day 15:二叉树


最大二叉树


题目链接:654. 最大二叉树 - 力扣(LeetCode)

文章讲解:代码随想录

视频讲解:又是构造二叉树,又有很多坑!| LeetCode:654.最大二叉树_哔哩哔哩_bilibili

题目建议:又是构造二叉树,昨天大家刚刚做完 中序后序确定二叉树,今天做这个 应该会容易一些, 先看视频,好好体会一下 为什么构造二叉树都是 前序遍历;


image-20250513100430003image-20250513100503679image-20250513100514745image-20250513100525510image-20250513100540907

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode constructMaximumBinaryTree(int[] nums) {
        
    }
}

题目解析


  1. 前序遍历构建:先构造根节点,再递归构建左右子树
  2. 最大值作为根节点:每次在当前数组区间内找到最大值作为当前子树的根
  3. 数组分割:根据最大值位置将数组分为左右两部分,分别构建左右子树

654.最大二叉树


class Solution {
    int[] nums;
    public TreeNode constructMaximumBinaryTree(int[] nums1) {
        nums = nums1;
        return dfs(0, nums.length-1);
    }

    private TreeNode dfs(int start, int end){
        if(start > end){
            return null;
        }
        
        // err: maxVal 不能初始化为0, 否则如果使用元素都小于0, 导致错误的索引选择
        int maxVal = Integer.MIN_VALUE;  
        int index = 0;
        for(int i = start; i <= end; i++){
            if(nums[i] > maxVal){
                maxVal = nums[i];
                index = i;
            }
        }
        TreeNode root = new TreeNode(maxVal);
        root.left = dfs(start, index-1);
        root.right = dfs(index+1, end);
        return root;
    }
}

总结


  1. 步骤:

    • 直接在原数组上操作,通过索引控制区间
    • 避免频繁创建新数组,提高效率
    • 使用区间[start, end]
  2. 递归终止条件:

    • 当区间为空(start > end)时返回null
  3. 时间复杂度:

    • 平均O(nlogn),最坏O(n²)(当数组有序时)
  4. 空间复杂度:

    • O(n)(递归栈空间)

合并二叉树


题目链接:617. 合并二叉树 - 力扣(LeetCode)

文章讲解:代码随想录

视频讲解:一起操作两个二叉树?有点懵!| LeetCode:617.合并二叉树

题目建议:这次是一起操作两个二叉树了, 估计大家也没一起操作过两个二叉树,也不知道该如何一起操作,可以看视频先理解一下。 优先掌握递归。


image-20250513100727336image-20250513100736835image-20250513100753912

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
        
    }
}

题目解析


  • 递归函数: mergeTrees(TreeNode root1, TreeNode root2)
  • 递归出口:如果一颗其中一个节点为空,返回另一个节点,这样能连接到另一个节点的子树
    • if (root1 == null) return root2;
    • if (root2 == null) return root1;
    • 该递归出口是本题的神来之笔,需要重点理解这个递归出口的作用;
  • 重复子问题:处理当前节点的值,并且连接好左右子节点,然后向上返回处理好的节点

617.合并二叉树


方法一:递归

class Solution {
    public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
        if (root1 == null) return root2;
        if (root2 == null) return root1;
        
        root1.val += root2.val;
        root1.left = mergeTrees(root1.left, root2.left);
        root1.right = mergeTrees(root1.right, root2.right);
        
        return root1;
    }
}

方法二:迭代(队列实现)

class Solution {
    public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
        if (root1 == null) return root2;
        if (root2 == null) return root1;
        
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root1);
        queue.offer(root2);
        
        while (!queue.isEmpty()) {
            TreeNode node1 = queue.poll();
            TreeNode node2 = queue.poll();
            
            node1.val += node2.val;
            
            if (node1.left != null && node2.left != null) {
                queue.offer(node1.left);
                queue.offer(node2.left);
            }
            
            if (node1.right != null && node2.right != null) {
                queue.offer(node1.right);
                queue.offer(node2.right);
            }
            
            if (node1.left == null && node2.left != null) {
                node1.left = node2.left;
            }
            
            if (node1.right == null && node2.right != null) {
                node1.right = node2.right;
            }
        }
        
        return root1;
    }
}

方法三:不修改原树结构(新建树)

class Solution {
    public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
        if (root1 == null) return root2;
        if (root2 == null) return root1;
        
        TreeNode root = new TreeNode(root1.val + root2.val);
        root.left = mergeTrees(root1.left, root2.left);
        root.right = mergeTrees(root1.right, root2.right);
        
        return root;
    }
}

总结


  1. 递归思路:
    • 前序遍历方式处理节点
    • 直接修改 root1 的结构(或新建树)
    • 时间复杂度O(n),空间复杂度O(n)
  2. 迭代思路:
    • 使用队列层序遍历
    • 同时处理两棵树的对应节点
    • 时间复杂度O(n),空间复杂度O(n)

提示:大多数情况下使用方法一即可,既高效又简洁。如遇到特别深的树(可能栈溢出),可考虑使用迭代法


二叉搜索树中的搜索


题目链接:700. 二叉搜索树中的搜索 - 力扣(LeetCode)

文章讲解: 代码随想录

视频讲解:不愧是搜索树,这次搜索有方向了!| LeetCode:700.二叉搜索树中的搜索

题目建议:递归和迭代都可以掌握以下,因为本题比较简单, 了解一下二叉搜索树的特性


image-20250513100951140image-20250513101000051image-20250513101010869image-20250513101021007

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode searchBST(TreeNode root, int val) {
        
    }
}

题目解析


二叉搜索树特性

  • 左子树所有节点值 < 根节点值
  • 右子树所有节点值 > 根节点值
  • 左右子树也都是二叉搜索树

在这里插入图片描述


最优解法(利用BST特性)

1. 递归实现

class Solution {
    public TreeNode searchBST(TreeNode root, int val) {
        // err: 如果当前节点为空, 或者当前节点的值等于目标值, 直接返回即可
        if(root == null || root.val == val){
            return root;
        }

        return root.val < val ? searchBST(root.right, val): searchBST(root.left, val);
        // err: root.val < val 是去右子树继续找, 不要弄反了
    }
}

2. 迭代实现

class Solution {
    public TreeNode searchBST(TreeNode root, int val) {
        while(root != null){
            if(root.val == val)return root;
            root = (root.val > val ? root.left : root.right);
        }
        return root;
    }
}

三元运算符的语法是:

condition ? expressionTrue : expressionFalse
  • condition 是一个布尔表达式,用于判断条件是否成立。
  • expressionTrue 是当条件成立时执行的表达式。
  • expressionFalse 是当条件不成立时执行的表达式。
root.val > val ? root = root.left : root = root.right;  // 错误, 后面不能是赋值操作

root = (root.val > val ? root.left : root.right); // 正确使用方法

普通二叉树解法(对比参考)

1. 递归实现

class Solution {
    public TreeNode searchBST(TreeNode root, int val) {
        if (root == null || root.val == val) return root;
        TreeNode left = searchBST(root.left, val);
        return left != null ? left : searchBST(root.right, val);
    }
}

2. 迭代实现(使用栈)

class Solution {
    public TreeNode searchBST(TreeNode root, int val) {
        if (root == null) return null;
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        while (!stack.isEmpty()) {
            TreeNode node = stack.pop();
            if (node.val == val) return node;
            if (node.right != null) stack.push(node.right);
            if (node.left != null) stack.push(node.left);
        }
        return null;
    }
}

总结


  1. BST搜索优势:

    • 利用有序性可确定搜索方向
    • 无需遍历所有节点,效率更高
  2. 时间复杂度:

    • BST最优解:平均O(logn),最坏O(n)(退化成链表时)
    • 普通二叉树解:O(n)
  3. 空间复杂度:

    • 递归:O(h),h为树高
    • 迭代:BST最优解O(1),普通解法O(n)
  4. 实现建议:

    • 优先使用BST特性解法
    • 迭代法通常效率更高
    • 普通二叉树解法仅作对比参考

验证二叉搜索树


题目链接:98. 验证二叉搜索树 - 力扣(LeetCode)

文章讲解:代码随想录

视频讲解:你对二叉搜索树了解的还不够! | LeetCode:98.验证二叉搜索树

题目建议:遇到搜索树,一定想着中序遍历,这样才能利用上特性。 但本题是有陷阱的,可以自己先做一做,然后在看题解,看看自己是不是掉陷阱里了。这样理解的更深刻。


image-20250513101141530image-20250513101152333image-20250513101202614image-20250513101211175

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public boolean isValidBST(TreeNode root) {
        
    }
}

题目解析


方法一:上下界递归(最佳性能)

  • 关键易错点
    1. 每次递归只检查当前节点与直接子节点的关系;
    2. 没有验证整个左子树都小于当前节点,整个右子树都大于当前节点
      在这里插入图片描述

  • 递归出口:遍历到空节点时,返回 true

  • 递归函数:dfs(TreeNode root, Long minVal, Long maxVal )
    image-20250513125343480

  • 重复子问题(验证整个左子树都小于当前节点,整个右子树都大于当前节点):
    1. root.val <= minValroot.val >= maxVal,如果有一个符合,返回 false
    2. 继续判断左子树 root.left.val minVal root.val
    3. 继续判断右子树 root.right.valroot.valmaxVal

class Solution {
    public boolean isValidBST(TreeNode root) {
        return dfs(root, Long.MIN_VALUE, Long.MAX_VALUE);
        // err: 如果使用 Integer, root = [2147483647] 一个节点时会返回 false
    }

    private boolean dfs(TreeNode root, long minVal, long maxVal){
        if(root == null){
            return true;
        }

        if(root.val >= maxVal || root.val <= minVal){  
            // err: 等于的时候也应该是错的, 并且不是 &&
            return false;
        }

        return dfs(root.left, minVal, root.val) && dfs(root.right, root.val, maxVal);
    }
}

方法二:中序遍历+数组验证

class Solution {
    private List<Integer> list = new ArrayList<>();

    public boolean isValidBST(TreeNode root) {
        traversal(root);
        for (int i = 1; i < list.size(); i++) {
            if (list.get(i) <= list.get(i-1)) return false;
        }
        return true;
    }

    private void traversal(TreeNode root) {
        if (root == null) return;
        traversal(root.left);
        list.add(root.val);
        traversal(root.right);
    }
}

方法三:递归中序遍历(推荐)

class Solution {
    private TreeNode prev = null;

    public boolean isValidBST(TreeNode root) {
        if (root == null) return true;
        if (!isValidBST(root.left)) return false;
        if (prev != null && prev.val >= root.val) return false;
        prev = root;
        return isValidBST(root.right);
    }
}

方法四:迭代中序遍历

class Solution {
    public boolean isValidBST(TreeNode root) {
        Stack<TreeNode> stack = new Stack<>();
        TreeNode prev = null;
        while (root != null || !stack.isEmpty()) {
            while (root != null) {
                stack.push(root);
                root = root.left;
            }
            root = stack.pop();
            if (prev != null && prev.val >= root.val) return false;
            prev = root;
            root = root.right;
        }
        return true;
    }
}

总结


  1. BST验证核心:中序遍历结果必须严格递增

  2. 常见陷阱:

    • 仅比较左右子节点(错误)
    • 处理Integer.MIN_VALUE边界情况
  3. 方法对比:

    • 方法一:最佳性能解法(O(n)时间,O(1)空间)
    • 方法二:直观但需要额外空间
    • 方法三:最优递归解法
    • 方法四:最优迭代解法

提示:推荐使用方法一或方法二,代码简洁且效率高。使用方法一时注意用 long 类型处理边界值。


在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值