1、创建开发机
镜像:Cuda12.2-conda
资源配置:10% A100(也可选择更高资源配置)
2、前期准备:
运行如下代码安装xtuner:
# 创建一个目录,用来存放源代码
mkdir -p /root/InternLM/code
cd /root/InternLM/code
git clone -b v0.1.21 https://github.com/InternLM/XTuner /root/InternLM/code/XTuner
# 进入到源码目录
cd /root/InternLM/code/XTuner
conda activate xtuner0121
# 执行安装
pip install -e '.[deepspeed]'
安装完成后如下图:
3、模型准备:
# 创建一个目录,用来存放微调的所有资料,后续的所有操作都在该路径中进行
mkdir -p /root/InternLM/XTuner
cd /root/InternLM/XTuner
mkdir -p Shanghai_AI_Laboratory
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b Shanghai_AI_Laboratory/internlm2-chat-1_8b
输入tree命令进行查看目录,得到下图:
4、快速开始
启动应用:
conda activate xtuner0121
streamlit run /root/InternLM/Tutorial/tools/xtuner_streamlit_demo.py
进行端口映射进入页面,如下图:
经过一系列微调后,可得到更改了名字的助手