“第二课堂”AI实践第四次笔记

一、大型语言模型(LLM)理论简介

1.LLM定义与特点:处理海量文本,多者可具备数百亿参数,理解语言深度,展现涌现能力。

2.模型大小与性能关系:与小模型架构相似,但参数量级提升带来解决复杂任务的显著优势。

3.LLM国内外代表:国外有GPT系列、LLaMA等,国内有文心一言、通义千问等,均表现强大。

4.LLM应用实例:ChatGPT是LLM的对话应用典范,展示出与人类流畅自然的交互能力。

5.常见的LLM模型(闭源LLM特性简介):OpenAI的GPT模型包括ChatGPT和GPT-4,是强大的生成式预训练语言模型,用于对话和复杂任务解决。GPT-4的规模超过GPT-3,性能大幅提升,支持多模态输入。ChatGPT则展示了卓越的会话能力,可扩展并支持插件。

6.LLM的能力:

(1)涌现能力简介:LLM具有上下文学习、指令遵循和逐步推理等能力,使其成为解决复杂问题和应用于多领域的强大工具。

(2)基座模型的多元应用能力:基座模型是预训练的AI技术范式,通过大模型统一处理多任务,提升研发效率,减少人力,增强应用效果。

(3)支持对话统一入口:ChatGPT推动了对话式AI发展,大型语言模型让聊天机器人重获关注,预示未来智能体应用新趋势。

7.LLM的特点:

(1)大语言模型特点概述:规模巨大,参数量可达数十亿至数千亿,能捕获复杂语言结构。

(2)预训练与微调机制:先在大规模无标签数据上预训练,再通过有标签数据微调适应特定任务。

(3)上下文感知能力:能理解和生成依赖上下文的内容,擅长对话、文章生成和情境理解。

8.LLM的广泛应用:

(1)自然语言处理的革新

(2)改进信息检索

二、stable diffusion图像生成方法

(一)概述

1.stable diffusion概述:stable diffusion是一种基于深度学习的文本到图像的生成模型。

2.主要组成部分:文本编码器、图像解码器、噪声预测器。

(二)模型优势

1.模型稳定性:stable diffusion模型在训练过程中表现出较高的稳定性,不易出现崩溃或异常现象

2.训练速度:stable diffusion模型在训练过程中具有较快的速度,能够快速生成高质量的图像。

3.易于优化和多样性控制

(三)模型缺点

1.模型训练数据不足

2.模型参数设置不当

3.模型结构设计问题

4.生成样本速度问题:模型训练时间长、模型推理时间长、硬件要求高

(四)前景与应用:创意性与多样性拓展

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值