一、大型语言模型(LLM)理论简介
1.LLM定义与特点:处理海量文本,多者可具备数百亿参数,理解语言深度,展现涌现能力。
2.模型大小与性能关系:与小模型架构相似,但参数量级提升带来解决复杂任务的显著优势。
3.LLM国内外代表:国外有GPT系列、LLaMA等,国内有文心一言、通义千问等,均表现强大。
4.LLM应用实例:ChatGPT是LLM的对话应用典范,展示出与人类流畅自然的交互能力。
5.常见的LLM模型(闭源LLM特性简介):OpenAI的GPT模型包括ChatGPT和GPT-4,是强大的生成式预训练语言模型,用于对话和复杂任务解决。GPT-4的规模超过GPT-3,性能大幅提升,支持多模态输入。ChatGPT则展示了卓越的会话能力,可扩展并支持插件。
6.LLM的能力:
(1)涌现能力简介:LLM具有上下文学习、指令遵循和逐步推理等能力,使其成为解决复杂问题和应用于多领域的强大工具。
(2)基座模型的多元应用能力:基座模型是预训练的AI技术范式,通过大模型统一处理多任务,提升研发效率,减少人力,增强应用效果。
(3)支持对话统一入口:ChatGPT推动了对话式AI发展,大型语言模型让聊天机器人重获关注,预示未来智能体应用新趋势。
7.LLM的特点:
(1)大语言模型特点概述:规模巨大,参数量可达数十亿至数千亿,能捕获复杂语言结构。
(2)预训练与微调机制:先在大规模无标签数据上预训练,再通过有标签数据微调适应特定任务。
(3)上下文感知能力:能理解和生成依赖上下文的内容,擅长对话、文章生成和情境理解。
8.LLM的广泛应用:
(1)自然语言处理的革新
(2)改进信息检索
二、stable diffusion图像生成方法
(一)概述
1.stable diffusion概述:stable diffusion是一种基于深度学习的文本到图像的生成模型。
2.主要组成部分:文本编码器、图像解码器、噪声预测器。
(二)模型优势
1.模型稳定性:stable diffusion模型在训练过程中表现出较高的稳定性,不易出现崩溃或异常现象
2.训练速度:stable diffusion模型在训练过程中具有较快的速度,能够快速生成高质量的图像。
3.易于优化和多样性控制
(三)模型缺点
1.模型训练数据不足
2.模型参数设置不当
3.模型结构设计问题
4.生成样本速度问题:模型训练时间长、模型推理时间长、硬件要求高
(四)前景与应用:创意性与多样性拓展