一、大模型的工作原理
二、大模型的固有缺陷
不具备知识出现幻觉 使用外界知识库给LLM提供知识
无法解决复杂逻辑任务 → 多个LLM协同各司其职
不擅长数学运算 使用外接工具如计算器等
三、什么是大模型开发
(一)开放的大模型API、本地部署的开源大模型
开放API如:GPT-4o、GLM、Qwen
本地部署如:GLM、Qwen、InternLM
(二)外接知识库、外接专业工具
外接搜索引擎、天气查询、代码书写等接口
(三)prompt工程及流程化
如何控制智能体的交互流程、如何构建Prompt使大模型更好地发挥作用
三、主流Prompt工程
(一)Few-shot
使用少量例子给LLM作为上提示
(二)Zero-shot
不使用例子输入,仅使用指令
(三)CoT
思维链,让LLM有思考的过程
(四)可控生成
是用Prompt控制LLM生成我们想要的格式方便后期进行解析
四、如何利用LLM搭建自己的AI智能助手