4.21 spark和hadoop的区别与联系

一、Hadoop

1. 定义
Hadoop是一个由Apache基金会开发的分布式系统基础架构。它最初是为了解决大规模数据存储和处理的问题而设计的。Hadoop的核心组件包括HDFS(Hadoop Distributed File System)和MapReduce。
2. HDFS(Hadoop Distributed File System)
存储方式
HDFS是Hadoop的分布式文件系统。它将文件分割成固定大小的块(block,默认大小通常是128MB),并将这些块存储在不同的节点上。例如,一个1GB的文件会被分割成8个128MB的块,这些块会被分散存储在集群的不同机器上。这种存储方式可以提高数据的可靠性,因为每个块都会在多个节点上进行备份(默认是3份副本)。如果某个节点出现故障,其他节点上的副本仍然可以保证数据的完整性。
适用场景
它适合存储大规模的、一次写入多次读取的文件。例如,对于一些日志数据,这些数据一旦生成后,通常不会频繁地修改,但需要多次被不同的分析程序读取,HDFS可以很好地满足这种需求。
3. MapReduce
工作原理
MapReduce是一种编程模型,用于处理大规模数据集。它包括两个主要阶段:Map阶段和Reduce阶段。在Map阶段,输入的文件被分割成一个个小的输入分片(input split),每个Map任务处理一个输入分片,将输入的键值对(key - value)转换成中间的键值对。例如,在一个单词统计的场景中,Map任务会将文本文件中的每一行(key为行的偏移量,value为行的内容)转换成以单词为key,数字1为value的中间结果(如“apple” - 1,“banana” - 1)。在Reduce阶段,它将中间结果按照key进行归并,对每个key对应的value进行累加等操作,最终输出最终结果(如“apple” - 3,“banana” - 2)。
特点
 MapReduce具有良好的容错性。当某个Map任务或Reduce任务失败时,Hadoop框架会自动重新分配任务。但是它的缺点是处理速度相对较慢,因为它依赖于磁盘I/O操作。每次Map任务和Reduce任务之间的数据交换都需要通过磁盘来进行,这使得它在处理实时性要求高的数据时不太适用。

4. 适用场景
Hadoop适合处理大规模的离线数据处理任务。例如,在互联网公司中,对海量的用户行为日志进行分析,这些日志数据量巨大,而且不需要实时处理,Hadoop可以很好地完成这种批量处理工作。


二、Spark

1. 定义
   - Spark是一个开源的分布式计算框架,它可以在Hadoop之上运行,也可以在其他存储系统上运行。Spark的核心是它的内存计算能力,它能够将中间数据存储在内存中,从而大大提高数据处理的速度。
2. RDD(Resilient Distributed Dataset)
存储方式
RDD是Spark的基本数据结构,它是一个不可变的分布式数据集合。RDD可以存储在内存中,也可以存储在磁盘上。当数据存储在内存中时,Spark可以快速地对数据进行多次计算操作。例如,在一个数据挖掘任务中,如果需要对数据进行多次迭代计算(如机器学习算法中的梯度下降过程),将数据存储在内存中的RDD可以大大减少磁盘I/O操作,提高计算效率。
容错性
RDD具有容错性,它是通过血统机制(lineage)来实现的。每个RDD都记录了它的生成过程,包括它的父RDD和操作。如果某个节点上的RDD数据丢失,Spark可以根据血统信息重新计算丢失的数据。
3. DAG(Directed Acyclic Graph)
Spark的计算任务是通过DAG来表示的。DAG是一个有向无环图,它描述了各个RDD之间的依赖关系。例如,在一个数据处理流程中,有多个RDD操作,如map、filter、reduce等。Spark会根据这些操作构建一个DAG,然后根据DAG的依赖关系来优化任务的执行。它可以将一些操作合并在一起,减少数据的中间存储和计算任务的调度开销。
4. 适用场景
Spark适合处理大规模数据的实时计算和复杂计算任务。例如,在金融领域,对于股票交易数据的实时分析,需要快速地处理交易数据,计算出各种指标(如股票价格的实时波动情况等),Spark可以很好地满足这种实时性要求。同时,对于机器学习任务,Spark的MLlib(机器学习库)可以利用其内存计算的优势,快速地进行模型训练和预测。


三、区别

1. 存储和计算方式
Hadoop主要依赖HDFS进行分布式存储,通过MapReduce进行计算,计算过程中大量依赖磁盘I/O。而Spark主要通过RDD将数据存储在内存中进行计算,大大减少了磁盘I/O操作,提高了计算速度。
2. 容错机制
Hadoop的HDFS通过数据块的多副本存储来实现容错,当某个数据块丢失时,可以从其他副本获取。MapReduce任务的容错是通过框架自动重新分配失败的任务来实现的。Spark的RDD通过血统机制来实现容错,它可以根据RDD的生成过程重新计算丢失的数据,这种方式更加灵活,因为不需要像HDFS那样存储大量的数据副本。
3. 编程模型
Hadoop的MapReduce编程模型相对简单,但比较固定,主要包含Map和Reduce两个阶段。对于一些复杂的计算任务,可能需要将任务拆分成多个MapReduce作业来完成。而Spark提供了更丰富的编程模型,除了支持类似MapReduce的操作外,还支持更复杂的操作,如join、groupByKey等,并且可以通过DAG来优化任务的执行。
4. 性能
在处理大规模数据时,Spark通常比Hadoop更快。这是因为Spark的内存计算减少了磁盘I/O的开销,并且它的DAG调度机制可以优化任务的执行。例如,在一个大规模的排序任务中,Spark可能只需要几分钟就可以完成,而Hadoop可能需要几十分钟甚至更长时间。


四、联系

1. 存储层面
Spark可以运行在Hadoop的HDFS之上。HDFS为Spark提供了可靠的分布式存储基础。Spark可以像其他应用程序一样,通过HDFS的API来读取和存储数据。例如,在一个数据处理流程中,Spark可以从HDFS读取原始数据文件,经过一系列的计算操作后,再将结果存储回HDFS。
2. 生态层面
Hadoop和Spark都是大数据生态系统中的重要组成部分。它们可以相互配合使用。例如,在一个企业的大数据平台中,Hadoop可以用于存储和初步处理大规模的原始数据,Spark可以用于对这些数据进行更复杂的分析和实时计算。同时,Spark也可以利用Hadoop的其他组件,如Hive(数据仓库工具,可以和Spark SQL结合使用)和YARN(资源管理系统,Spark可以运行在YARN上进行资源调度)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值