目录
https://codeforces.com/contest/2094/problem/E
题面:
E. Boneca Ambalabu
每个测试的时间限制:2 秒
每个测试的内存限制:256 兆字节
Boneca Ambalabu 给你一个包含 n 个整数 a1,a2,⋯,an 的序列。
输出在 1≤k≤n 的范围内,(ak⊕a1)+(ak⊕a2)+⋯+(ak⊕an) 的最大值。注意,⊕ 表示按位异或运算。
输入
第一行包含一个整数 t(1≤t≤10e4)—— 独立测试用例的数量。
每个测试用例的第一行包含一个整数 n(1≤n≤2⋅10e5)—— 数组的长度。
每个测试用例的第二行包含 n 个整数 a1,a2,⋯,an(0≤ai<2e30)。
保证所有测试用例的 n 之和不超过 2⋅105。
输出
对于每个测试用例,在新的一行输出最大值。
思路分析:
暴力枚举的方法很容易想到,但是时间复杂度很高为n2,这时我们先想是不是有什么结论,本题没看出来,所以我们开始考虑优化。
遍历每一个数使其成为ak,这一步是无法省略的,如果省略会导致答案不全面,所以我们来优化求异或的操作。
先说一下异或的效果:在某一位上,如果两数相同那么异或后为0,否则为1,例如(101)^(100)=(001)。
我们枚举每一个ak,也就知道了ak的每一位的值,此时如果知道数组其余全部元素的每一位的1的个数,就可以直接按位枚举求得最终的异或值,题目说的ai<=2e30,所以每个数最多30位,最终时间复杂度就优化成了nlogn。
现在我们只需要预处理,每一位有多少个1即可;
总代码:
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N=2e5+10;
int a[N];
void solve() {
int n;
cin >> n;
vector<int>b(30,0);
for(int i=1;i<=n;i++){
cin >> a[i];
for(int j=0;j<30;j++)//预处理0-30位每一位1的个数
{
if(a[i]>>j&1)
b[j]++;
}
}
int ans=0;
for(int i=1;i<=n;i++)
{
int cnt=0;
for(int j=0;j<30;j++)
{
if(a[i]>>j&1)当前位为1
{
cnt+=(n-b[j])<<j;
n-b[j]是0的数量,根据异或原理,当前位是1时,与0异或是1,与1异或是0,有多少0,就代表ak与数组其他元素异或后有多少1,然后根据1所处的位数进行*(2的j次方)的操作,也就是左移j位的操作;
}
else {
cnt+=b[j]<<j;
}
当前位为0时同理;
}
ans=max(ans,cnt);
不断更新答案取最大值;
}
cout << ans << endl;
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin >> t;
while (t--) {
solve();
}
return 0;
}