- 博客(644)
- 资源 (14)
- 收藏
- 关注
原创 基于Cartographer建图、Fast_LIO2-ICP定位及A*-TEB路径规划的导航方案
REF:基于 ROS2 平台的室内移动机器人导航系统设计与研究。
2025-10-20 09:39:33
851
原创 全自动相机在线标定方法
由于校准参数估计引入的非线性特性,采用高斯和滤波器(SOG)将整体非线性变化范围分割为多个近似线性的小段,在估计初期阶段使用多个滤波器覆盖所有近似线性假设。由于多个高斯函数仅需在地图尺寸较小的初始阶段保留,预计其计算复杂度足够低,能够实现实时性能。因此,SOG算法的核心部分是由多个并行运行的扩展卡尔曼滤波器组成的池。x1. 需要指出的是,只要高斯函数数量足够大,任何概率密度函数都可以用加权高斯和进行合理近似。2. 随着高斯函数数量的增加,每个函数对应的置信度P会逐渐减小,这种特性特别有利于保持线性化处理。
2025-10-15 11:48:11
300
原创 五点法求解相机的相对位姿
利用 F 矩阵秩为 2 的约束 det(F) = 0,代入线性组合得到一个关于 α 的三次方程,最多可得到 3 个实数解,然后从最多3个解中筛选出正确的 F,同样无法处理退化场景。数学过程:将 x‘ᵀ * E * x = 0 方程展开,虽然 E 有 9 个元素,但由于尺度不变性和内在约束(秩为 2,行列式为 0),它只有 5 个自由度,每个点对可以提供一个方程,用 5 个点构建一个线性方程组,但由于方程是非线性的,最终会转化为一个 10次方程的求解问题,最多可以得到 10 个可能的实数解。
2025-10-15 11:47:54
1027
原创 SLAM基础原理介绍
为获取最优全局估计,系统定期将子地图与全局地图进行配准,并对两个地图共有的特征点执行约束更新,完成更新后,系统将生成新的子地图并继续迭代。状态增强:状态增强本质上是一种稀疏操作,由于车辆运动模型仅影响位姿状态,协方差预测可以改写为具有地标数量线性复杂度的形式,将新地标点添加到状态向量中的过程具有类似的形式,新地图地标点的初始化是根据机器人姿态和观测值进行的,状态增强的基本思想可以应用于任何新状态是现有状态子集的函数的情况,状态通过新增的姿态x 进行扩展,并通过边缘化处理移除前一时态x。
2025-10-11 17:11:11
1176
原创 SLAM算法性能评估方法
与SLAM方法性能指标相关的研究活动,大致可分为三大类:第一类是竞赛场景,机器人系统需在特定问题情境中展开,例如足球比赛、沙漠导航或搜救行动;第二类是利用公开数据集合,这些数据集专门用于对比算法在具体问题中的表现;第三,使用不同方法和评分指标进行比较。在基准测试场景中对机器人进行比较是一种直接的方法,可以确定特定的系统属性,比如:瑞士联邦理工学院与国际机器人研究学会:曾发起过多次机器人竞赛来评估清洁机器人的性能;欧洲航天局:模拟火星环境中的机器人;RoboCup联合会:足球机器人或灾难救援机器;
2025-10-11 09:09:22
598
原创 VI-SLAM定位方案对比
VI-SLAM(视觉惯性同步定位与建图)技术通过融合摄像头与IMU(惯性测量单元)数据实现定位与环境感知,VI-SLAM系统依据后端优化类型可以主要分为滤波式和优化式两大方案,也可根据传感器融合类型进一步划分为松耦合或紧耦合两类,松耦合方法通常仅通过惯性测量单元(IMU)融合来估计姿态和位置变化,但不涉及完整姿态估计,紧耦合方法将相机状态与IMU状态融合为运动-观测方程,进而进行状态估计。
2025-10-11 09:08:51
982
原创 基础模型推动具身机器人操作
基础模型具备学习多任务并同步做出精细化决策的能力,值得注意的是,最新进展已将二者深度融合,通过训练大型机器人基础模型实现规划与控制的协同处理,就像大脑和小脑的合作一样,显著增强了推理和执行能力,以少量或零样本的方式处理复杂和长期的任务。通过基础模型实现自主机器人操作挑战的研究,主要有两大核心方向:1) 高级规划:该方向通过解析用户自然语言指令和环境交互数据,实现分步决策过程。2) 低级控制:专注于执行指令的同时实时监测环境与机器人状态,最终确定机械臂末端执行器位置、关节活动角度等精确操作参数。
2025-10-09 09:08:05
234
原创 室外SLAM算法概述
1. 室外高精地图泛信息道路数据采集:数据采集车和其他外部传感器用于采集多源数据,如激光雷达系统点云数据、遥感图像、倾斜摄影测量数据、高清相机图像、热红外图像、声音信号和电磁信号。道路静态信息提取:静态信息是通过多源数据获得的路线规划和车辆定位的基础,包括车道线、路缘石、栏杆、路标、路灯、隧道等。
2025-10-09 09:07:35
279
原创 激光SLAM的回环检测
SLAM 解决的是根据观测到的环境信息,估计自身的位置和姿态并建立环境地图的问题,本质在于利用观测到的数据和先验信息来估计最大后验概率,观测到的数据之间存在着一定的约束关系。在激光 SLAM 中,主要存在两种优化方式,即滤波器和非线性优化方法:滤波器优化算法基于贝叶斯概率模型,通过利用先验信息、测量信息和状态转移公式计算后验概率,从而得到最优估计的状态量;
2025-10-06 15:11:26
641
原创 一款基于ESP32的导航小车
基 于 双 核 Tensilica Xtensa LX6 处 理 器 的ESP32 作为主控芯片,其内置的 Wi-Fi 和蓝牙模块支持 WiFi 802.11 b /g /n 和蓝牙 4.2 /5.0 标准,能够实现小车与外部设备的无线通信。ORB-SLAM2进行特征点的提取与匹配,使用ORB算法提取特征点(特征点描述符通过BRIEF算法计算),根据特征点匹配结果,通过 PnP计算位姿,并执行 BA优化位姿与地图点,之后使用 MPU 的加速度和角速度数据更新位姿。
2025-10-06 15:10:38
219
原创 融合RTK的路径规划
DWA 算法作为局部路径规划算法中的经典算法,通过计算速度和角速度的方式对机器人位置进行表示,从而快速得到下一规划轨迹的最优解,具体流程为:首先对初始值进行赋予,然后进行自适应权重调整,计算动态窗口并采样;引入评价子函数(引入角速度、线加速度、角加速度评价子函数),减缓在遇到障碍物时,机器人为进行避障,其角速度方向频繁变换从而出现抖振的现象,避免陷入局部最优解,导致机器人局部路径规划失败。将校正后的关键帧构成局部子图,并采用帧间匹配法匹配关键帧与子图,获得闭环约束因子;
2025-10-02 11:49:32
535
原创 一款基于STM32F103和树莓派的无人车
在启发式函数中引入方向性加权机制,将传统的曼哈顿距离与角度夹角信息结合,新增一个基于向量内积的角度代价项 CROSS,即将从当前节点指向目标节点与起点指向目标节点的向量方向差异作为权值,加入评价函数 f(n) = g(n) + h(n) + w*CROSS,使搜索更具目标导向性,路径更平滑。在邻域扩展上突破经典八方向限制,引入多阶邻域策略,即在考虑一阶邻域基础上,进一步引入二阶、三阶邻域,即 16 个点或 24 个点,允许搜索算法在更大范围内探测可行路径,提高了在复杂障碍环境中的可通行性与全局最优解能力。
2025-10-02 11:48:53
474
原创 SLAM优化的常用模型
传统路径规划算法分为基于图搜索和基于采样两种,智能算法能在一定程度上弥补传统算法不足,比如图搜索的算法计算时间过长,采样的算法找到可能不是最优路径。基于图搜索算法主要有 Dijkstra 算法和 A*算法等:Dijkstra 算法采用贪心思想,由起始点向外层层拓展,直至拓展到目标点;Dijkstra 算法与广度优先搜索算法相结合所形成的 A*算法,相较于 Dijkstra 算法而言,A*通过设置启发式函数,减少了搜索节点数量,使该算法能够更快地找到最优路径。
2025-09-29 09:09:07
699
原创 SLAM导航常用概念及技术
RRT 算法以其树形结构的构建方式,通过随机采样和目标向导的策略,有效地实现了路径的逐步构建,适合于动态或未知环境的快速路径规划。全覆盖路径规划技术是在确保覆盖特定区域内所有可能位置的同时,在最小程度上实现重复覆盖和未覆盖区域的技术,目标是设计出一条有效的路径,使得设备能够经过区域内的每一个点至少一次,同时又要尽可能地减少路径的总长度和时间,主要分为离线式和在线式两种:离线式是环境地图已知的情况下进行路径规划,而在线式路径规划则利用机器人携带的传感器同时建图与规划路线。
2025-09-28 09:02:39
952
原创 基于视觉的VSLAM框架介绍
视觉vSLAM算法框架由五个模块构成:初始化、跟踪、地图构建、重定位和全局地图优化。由于不同vSLAM算法在各模块采用的方法各异,其性能特点主要取决于具体采用的技术方案。因此,要准确评估vSLAM算法的性能表现、优势及局限性,深入理解各模块的工作原理至关重要。
2025-09-27 12:00:00
611
原创 视觉SLAM算法对比
1. 纯视觉SLAM对比纯视觉SLAM类别可分为两种主要方法:基于特征的方法和直接方法。视觉的SLAM系统基于二维图像处理,系统通过多视角获取数据,首先执行初始化流程以定义全局坐标系并重建初始地图。在基于特征的滤波算法中,第一步会将地图点初始化为高不确定性状态,这些点最终可能收敛到实际位置。随后进行目标跟踪,尝试估算相机位姿。与此同时,随着更多未知场景被观测,三维重建过程会持续添加新点位。仅视觉SLAM系统可采用单目相机或立体相机,基于单目相机的SLAM技术因其传感器体积小巧(所有方案中最小)、成本低廉、校
2025-09-26 08:47:36
1005
原创 2D激光SLAM建图算法对比
HectorSLAM系统仅依赖扫描匹配技术,未采用里程计功能——这种设计优势与劣势取决于机器人类型及环境特性。该系统建议采用专用硬件(如高刷新率激光雷达)进行测试验证。Gmapping在所有实验中都表现出强大的稳定性,因为每次实验中误差和CPU负载始终保持在较低水平。该系统通过结合扫描匹配与里程计技术,有效减少了粒子数量。KartoSLAM和LagoSLAM都是基于图的SLAM方法,但它们的结果却截然不同。
2025-09-26 08:38:32
366
C# 进程调度 管理,真操作系统中进程调度的原理和过程
2009-06-12
国外人形机器人产品及视频
2024-08-13
国内人形机器人产品及视频
2024-08-13
20个当前知名人形机器人公司的产品参数及介绍
2024-08-13
.NET环境下C#实现存储器管理
2009-06-12
通过网页服务器监控设备状态
2018-12-28
数据库中各个类的应用实例
2008-09-17
.net 下C#实现银行家算法
2009-06-12
数据库各个类的实例应用
2008-09-17
Collections的实例应用
2008-09-14
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅