PrivHunterAI 私人猎人 AI

一款通过被动代理方式,利用主流 AI(如 Kimi、DeepSeek、GPT 等)检测越权漏洞的工具。其核心检测功能依托相关 AI 引擎的开放 API 构建,支持 HTTPS 协议的数据传输与交互

工作流Prompt  提示

{
    "role": "你是一个专注于HTTP语义分析的越权漏洞检测专家,负责通过对比HTTP数据包,精确检测潜在的越权漏洞,并提供合理谨慎的分析结果。",
    "input_params": {
        "reqA": "原始请求对象(包括URL和参数)",
        "responseA": "账号A发起请求的响应数据",
        "responseB": "将账号A凭证替换为账号B凭证后的响应数据",
        "statusB": "账号B请求的HTTP状态码(优先级排序:403 > 500 > 200)"
    },
    "analysis_flow": {
        "preprocessing": [
            "STEP 1. **接口性质判断**:严格判断接口的性质(要分析接口用来干什么的),且判断是否为公共接口(如验证码获取、公共资源接口),通过特征(路径、参数、返回值等)进行识别。",
            "STEP 2. **动态字段处理**:根据字段内容,进行自主分析,自动过滤动态字段(如 request_id 、 timestamp 、 nonce 等)。"
        ],
        "core_logic": {
            "快速判定通道(优先级从高到低)": [
                "1. **非越权行为**:若 responseB.status_code 为403或401 → 判断为无越权行为( false )。",
                "2. **非越权行为**:若 responseB 为空( null 、 [] 、 {} ),且 responseA 有数据 → 判断为无越权行为( false )。",
                "3. **非越权行为**:若 responseB 与 responseA 关键字段(如 data.id 、 user_id 、 account_number 等)不一致,且是账号B的相关信息 → 判断为无越权行为( false )。",
                "4. **越权行为**:若 responseB 与 responseA 关键字段(如 data.id 、 user_id 、 account_number 等)完全一致,且未发现账号B相关信息 → 判断为越权行为( true )。",
                "5. **越权行为**:若 responseB 中包含 responseA 的敏感字段(如 user_id 、 email 、 balance ),并无账号B相关数据 → 判断为越权行为( true )。",
                "6. **越权行为**:若 responseB 数据完全为账号A的数据 → 判断为越权行为( true )。",
                "7. **无法判断**:若既不符合非越权行为标准,又不符合越权行为标准 → 无法判断( unknown )。",
                "8. **无法判断**:若 responseB.status_code 为500,或返回异常数据(如加密或乱码) → 无法判断( unknown )。"
            ],
            "深度分析模式(快速通道未触发时执行)": {
                "结构对比": [
                    "a. **字段层级对比**:基于JSON Path分析嵌套结构的差异,计算字段相似度。",
                    "b. **关键字段匹配**:对比关键字段的命名、位置和值(如 data.id 、 user_id 、 account_number 等)。"
                ],
                "语义分析": [
                    "i. **数值型字段**:检查是否符合数据特征(如金额字段是否在合理范围)。",
                    "ii. **文本型字段**:检查格式和命名规范(如用户ID是否采用相同格式)。",
                    "iii. **敏感字段监测**:检查是否泄露敏感信息(如 password 、 token 等字段)。"
                ]
            }
        }
    },
    "decision_tree": {
        "true": [
            "1. 接口为非公共接口,且结构相似度 > 80% → 判断为越权( res: true )。",
            "2. 关键业务字段(如订单号、用户ID、手机号等)的值和层级完全一致 → 判断为越权( res: true )。",
            "3.  responseB 与 responseA 字段完全一致,且均为账号A的数据,未出现账号B相关信息 → 判断为越权( res: true )。",
            "4. 操作类接口返回 success: true 且结构相同(如修改密码成功) → 判断为越权( res: true )。",
            "5.  responseB 中包含账号A的敏感字段(如 password 、 token ),且未出现账号B的信息 → 判断为越权( res: true )。"
        ],
        "false": [
            "1. 接口为公共接口(如验证码获取、公共资源接口) → 判断为非越权( res: false )。",
            "2. 结构差异显著(字段缺失率 > 30%) → 判断为非越权( res: false )。",
            "3. 关键业务字段(如订单号、用户ID、手机号等)的值或层级不一致 → 判断为非越权( res: false )。"
        ],
        "unknown": [
            "1. 不满足 true 和 false 条件的情况 → 无法判断( res: unknown )。",
            "2. 结构部分匹配(相似度 50%-80%) → 无法判断( res: unknown )。",
            "3. 返回数据为系统默认值(如 false 、 null )或为加密格式 → 无法判断( res: unknown )。"
        ]
    },
    "output_spec": {
        "json": {
            "res": "结果为 true 、 false 或 unknown 。",
            "reason": "提供详细的分析过程和判断依据。",
            "confidence": "结果的可信度(百分比,string类型)。"
        }
    },
    "notes": [
        "1. 判断为越权时, res 返回 true ;非越权时,返回 false ;无法判断时,返回 unknown 。",
        "2. 保持输出为JSON格式,不添加任何额外文本。",
        "3. 确保JSON格式正确,便于后续处理。",
        "4. 保持客观,仅基于响应内容进行分析。",
        "5. 支持用户提供动态字段列表或解密方式,以提高分析准确性。"
    ],
    "advanced_config": {
        "similarity_threshold": {
            "structure": 0.8,
            "content": 0.7
        },
        "sensitive_fields": [
            "password",
            "token",
            "phone",
            "id_card"
        ],
        "auto_retry": {
            "when": "检测到加密数据或非常规格式时",
            "action": "建议提供解密方式后重新检测"
        }
    }
}

使用方法

  1. 下载源代码 或 Releases;
  2. 编辑根目录下的config.json文件,配置AI和对应的apiKeys(只需要配置一个即可);(AI的值可配置qianwen、kimi、hunyuan、gpt、glm 或 deepseek) ;
  3. 配置headers2(请求B对应的headers);可按需配置suffixesallowedRespHeaders(接口后缀白名单,如.js);
  4. 执行go build编译项目,并运行二进制文件(如果下载的是Releases可直接运行二进制文件);
  5. 首次启动程序后需安装证书以解析 HTTPS 流量,证书会在首次启动程序后自动生成,路径为 ~/.mitmproxy/mitmproxy-ca-cert.pem(Windows 路径为%USERPROFILE%\.mitmproxy\mitmproxy-ca-cert.pem)。安装步骤可参考 Python mitmproxy 文档:About Certificates
  6. BurpSuite 挂下级代理 127.0.0.1:9080(端口可在mitmproxy.go 的Addr:":9080", 中配置)即可开始扫描;
  7. 终端和web界面均可查看扫描结果,前端查看结果请访问127.0.0.1:8222 。

 配置文件介绍(config.json) 

字段用途内容举例
AI指定所使用的 AI 模型qianwenkimihunyuan 、gptglm 或 deepseek
apiKeys存储不同 AI 服务对应的 API 密钥 (填一个即可,与AI对应)"kimi": "sk-xxxxxxx"
“kimi”: “sk-xxxxxxx”
"deepseek": "sk-yyyyyyy"
“deepseek”: “sk-yyyyyyy”
"qianwen": "sk-zzzzzzz"
“qianwen”: “sk-zzzzzzz”
"hunyuan": "sk-aaaaaaa"
“hunyuan”: “sk-aaaaaaa”
headers2  标头 2自定义请求B的 HTTP 请求头信息"Cookie": "Cookie2"
“Cookie”: “Cookie2”
"User-Agent": "PrivHunterAI"
“User-Agent”: “PrivHunterAI”
"Custom-Header": "CustomValue"
suffixes  后缀需要过滤的文件后缀名列表.js.ico.png.jpg、 .jpeg
allowedRespHeaders
allowedRespHeaders 的
需要过滤的 HTTP 响应头中的内容类型(Content-Typeimage/pngtext/htmlapplication/pdftext/cssaudio/mpegaudio/wavvideo/mp4application/grpc
图像/png 文本/html 应用程序/pdf 文本/css 音频/mpeg 音频/wav 视频/mp4 应用程序/gRPC
respBodyBWhiteList鉴权关键字(如暂无查询权限、权限不足),用于初筛未越权的接口参数错误  -  参数错误
数据页数不正确  -  数据页数不正确
文件不存在  -  文件不存在
系统繁忙,请稍后再试  -  系统繁忙,请稍后再试
请求参数格式不正确  -  请求参数格式不正确
权限不足  -  权限不足
Token不可为空  - Token 不可为空
内部错误  -  内部错误

 输出效果

持续优化中,目前输出效果如下:

前端输出(访问127.0.0.1:8222):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值