ComfyUI

ComfyUI基本


这里使用的是秋叶大佬的整合包,有需要的可以去找找资源,网上有人有百度或者夸克的网盘链接。

将整合包安装好在本地的机器中后,直接点击文件里面的exe文件,就可以直接启动ComfyUI应用

下面我给出2025.的ComfyUI整合包(百度网盘的可以自行去网上查找)

2025.2.4 更新 v1.6: Python 3.11 Pytorch 2.5.1 ComfyUI 内核 v0.3.13 插件新增部分常用节点,删除大量无用/过时节点 总插件数量精简 28 -> 21

【下载链接】 网盘:夸克网盘分享 解压密码:bilibili-秋葉aaaki

【报错解决】 遇到报错请前往启动器的 “疑难解答” 页面进行扫描

【ComfyUI-aki-v1.6.7z】SHA1校验码:C70C920D545FE479BC416115657238CA2BA0F761

简介

节点式AI绘画工具

ComfyUI是基于Stable Diffusion的图形化界面工具,通过节点(Nodes)和工作流(Workflow)管理AI图像生成过程。用户通过连接不同功能的节点(如加载模型、编码提示词、采样解码等)构建定制化生成流程,实现高度灵活的控制

与Stable Diffusion WebUI的区别

  • 灵活性:ComfyUI支持模块化设计,可自由组合节点,适合复杂创作需求;而WebUI界面固定,功能集成度高但可扩展性有限。

  • 复现性:ComfyUI的工作流可保存为JSON文件,便于分享和批量生产;WebUI依赖手动配置,难以精确复现结果。

  • 学习门槛:ComfyUI需理解Stable Diffusion底层原理(如潜空间、采样器),适合进阶用户;WebUI对新手更友好

关键技术与模型管理

  1. 模型类型与兼容性

    • 主模型(Checkpoint):如SD1.5、SDXL,决定生成风格与质量。

    • LoRA:微调模型,用于特定特征(如人脸、画风)的调整。

    • VAE:图像解码器,影响色彩与细节表现。

    • ControlNet:控制图像结构(如姿势、线条),需与主模型版本匹配。

  2. 模型格式与安全

    • 支持.ckpt(PyTorch)、.safetensors(安全轻量格式)等,后者推荐用于最终部署

核心组成与工作流程

  1. 节点(Nodes) 每个节点代表一个功能模块,例如:

    • Load Checkpoint加载Stable Diffusion基础模型(如SD1.5、SDXL)。

    • CLIP Text Encode:将文本提示词编码为向量,控制生成方向

    • KSampler:核心采样器,通过反向扩散去噪生成潜空间图像

    • VAE Decode将潜空间数据解码为可见的像素图像

  2. 工作流(Workflow)

    • 通过连接节点的输入输出形成数据流,例如:模型加载→提示词编码→采样→解码→保存

    • 支持复杂扩展,例如添加ControlNet(控制图像结构)、图生图、视频生成等节点

总结:ComfyUI通过节点式设计,将Stable Diffusion的生成过程透明化与模块化,兼顾灵活性与效率,适合追求深度定制和工业化生产的用户。其核心价值在于可复现的工作流技术可控性,但需投入时间学习底层逻辑。未来随着社区生态完善,可能成为AI绘画领域的标准工具之一

文生图

先介绍一个简单的工作流(跟据提示信息生成对应的图片)

  • 加载器:加载对应的大模型数据

  • 文本编码器:输入正面或者负面信息提示词(正面信息就是对需要生成图片的正向条件,都会满足。负面信息则不会被满足)

  • 空Latent;设置需要生成图片的长度宽度批次(一次性要生成几张)参数信息

  • K采样器:收集前面所定义的模型信息,正反面信息等为VAE解码做准备

  • VAE解码:解析K采样器中的数据信息

  • 图片保存:将生成的图片保存起来

提示词的权重

[]:代表0.9倍的权重   [[]]代表0.9*0.9=0.81倍的权重。以下同理
():代表1.1倍的权重
{}:代表1.05倍的权重

快捷键

可以直接使用Ctrl+上键-----》提高权重

可以直接使用Ctrl+下键-----》降低权重

注意:权重可以设置很低的值,但是权重不可以过高,因为过高的权重容易导致生成的图片失真。

提示词的顺序也反映了权重的信息,越靠前的提示词权重就越大,同理越靠后面的提示词权重越小。下面给出提示词的书写顺序的建议:

短句与长句

在文本编辑器里面,虽然两种方式都可以对需要生成的图片进行描述,但是一般使用短句的形式(提示词)来进行描述,一般不使用长句。原因是:短句对图片的限制更加精确,长句则略显不足。以及在提示词的权重控制上短句更加具有优势

注意:通过使用者的研究与测试,发现将提示词控制在75个以内是非常好的,因为这样通过提示词所生成的图片就更加精确,相反的是提示词超越75个后,可能会导致图片失真出现。

提示词污染

在使用一些提示词时可能会出现提示词的意思相互渗透的现象

解决方案:使用Break关键词将提示词分割开来

提示词融合

将两个提示词融合到一个事物的身上,条件是使用AND连接词或者使用_(下划线)链接。例如说:如果使用1girl,cat这两个提示词,那么工作流就会生成猫趴在女孩身上的图片。改成1girlANDcat,就会生成猫娘。

图生图

将图片与一组关键词同时作为输入,输出将会受到这一组关键词的共同调节

降噪
0.3~0.5:安全的重绘范围区间
0.5~0.7:赋予AI更多的想象与发挥空间
小于0.3:可能发生扭曲变形
大于0.7:可能发生扭曲变形

三重放大(提升图片的清晰度)

Controlnet

简介:ControlNet是一个用于图像生成控制的框架,通过不同的预处理方法来引导生成过程。

ControlNet 预处理模型

  1. Canny

    • 作用:通过检测图像中的强边缘生成清晰的轮廓(如物体边界、纹理)。

    • 特点边缘锐利,细节丰富,适合需要精准控制结构的场景(如建筑、机械设计)。

    • 差异:预处理后图像为黑白线条图,保留高频细节,可能包含较多噪点。

  2. SoftEdge

    • 作用:提取柔和边缘,弱化细节噪点,保留整体结构。

    • 特点边缘过渡自然,减少锯齿感,适合生成柔和风格或需要自然过渡的图像(如人像、风景)。

    • 差异:预处理图像线条较粗且模糊,类似铅笔素描,噪点较少。

  3. Lineart

    • 作用:生成简洁线稿,突出主体轮廓,忽略复杂纹理。

    • 特点线条干净利落,接近手绘线稿,适合艺术创作或动漫风格生成。

    • 差异:预处理图像仅保留关键线条,细节简化,背景可能被省略。

总结差异

  • 精细度:Canny > SoftEdge > Lineart

  • 噪点:Canny 最多,Lineart 最少。

  • 适用场景

    • Canny:写实细节控制

    • SoftEdge:自然过渡需求

    • Lineart:艺术化线稿生成

OpenPose

简介:识别图片中人物的身体姿态(如头部、四肢、关节位置),生成对应的骨架图。作用

特点

  • 保留姿势结构,确保生成的新图像与原图动作一致。

  • 支持多人检测,可同时处理多人物场景。

注意:与其他模型不同,OpenPose 不关注纹理或边缘,只专注于人体动作的“骨架”信息。

IPAdapter

简介:IPAdapter(Image Prompt Adapter)是 ComfyUI 的一个扩展插件,专为 图像驱动的 AI 生成控制 设计。它允许用户通过输入参考图像(如风格、构图或内容图)直接影响 Stable Diffusion 等模型的生成结果,实现更精准的图像控制,而无需复杂的参数调整。

核心功能

  1. 图像引导生成

    • 通过输入参考图(如草图、风格图、实拍图),控制生成图像的 风格、构图、色调或细节

    • 示例:输入一张水彩画,生成相同风格的 AI 图像。

  2. 轻量级适配

    • 相比 ControlNet,IPAdapter 模型体积更小(通常几百MB),对硬件要求更低,适合轻量化部署。

  3. 多模态控制

    • 支持 文本+图像混合提示,结合文字描述和视觉参考,提升生成准确性。

    • 示例:输入“森林中的城堡”+一张哥特式建筑草图,生成风格匹配的图像。

  4. 灵活的工作流集成

    • 在 ComfyUI 中以节点形式接入,兼容其他插件(如 LoRA、ControlNet),支持复杂工作流设计。

作用:
  • 人脸替换:IPAdapter 可以精确的识别参考图的面部特征,并引用该特征到结果图上

  • 材质迁移:可以识别参考图的材质,并将参考图的材质运用到结果涂上

  • 风格迁移:基于前两种功能的前提下,可以将参考图的风格迁移到结果图上

FLUX

FLUX 是 ComfyUI 中一个智能流程优化插件,能自动协调生成步骤、减少等待时间,让 AI 出图更快更流畅,尤其适合复杂工作流。

核心功能

  1. “红绿灯”调度: 自动安排生成任务的顺序,避免多个任务“堵车”,像交通信号灯一样让流程顺畅。

  2. 后台预加载: 提前准备下一步需要的模型和资源,减少卡顿(类似游戏加载时提前缓存地图)。

  3. 多任务并行: 边生成图片边处理其他任务(如放大、修复),不用干等每一步完成。

  4. 显存管家: 智能清理不再使用的临时数据,降低爆显存概率,尤其对低配显卡友好。

和 IPAdapter 的区别

  • IPAdapter用图片控制生成内容(比如“按这张画的风格画”)。

  • FLUX不参与内容控制,专注提升整体生成效率(“让画画过程更快不卡顿”)。

有 FLUX:相同任务可能只需6-7分钟,显存波动更平稳

无 FLUX:复杂工作流可能需要10分钟,显存占用高

### ComfyUI 安装、配置与使用指南 #### 1. 安装 ComfyUI 基础环境 为了成功安装和运行 ComfyUI,需先完成其基础环境的搭建。以下是具体操作方法: - 下载并解压 ComfyUI 的源码包至目标目录。 - 确保 Python 版本满足最低要求(通常是 Python 3.8 或更高版本)。如果尚未安装,请访问官方页面下载适合的操作系统版本[^4]。 启动脚本如下所示: ```bash python main.py ``` 此命令会初始化服务器端口,默认情况下可通过浏览器访问 `http://localhost:8000` 来查看界面[^4]。 --- #### 2. 配置额外模型路径 对于自定义模型的支持,ComfyUI 提供了一个名为 `extra_model_paths.yaml` 的配置文件用于指定模型存储位置。不同操作系统下的编辑方式略有差异: - **Windows**: 找到 ComfyUI 主目录中的 `extra_model_paths.yaml` 文件,并通过任意文本编辑工具打开修改。 - **Linux/macOS**: 同样定位到该文件,在终端中利用 `nano` 或其他偏好编辑器进行调整。 例如,添加一个新的模型路径可以按照以下格式书写: ```yaml ckpt: - ./models/checkpoints/ lora: - ./models/loras/ ``` 这一步骤允许程序识别更多类型的 AI 模型资源[^4]。 --- #### 3. 添加扩展功能 (Custom Nodes) ComfyUI 支持丰富的插件生态来增强核心能力。这里以两个常见项目为例说明如何集成第三方节点库。 ##### a) ComfyUI Essentials 插入 执行下列 Shell 脚本来实现自动迁移必要组件到定制化节点区域: ```bash cp -r ./ComfyUI_essentials /path/to/ComfyUI/custom_nodes/ ``` 注意替换 `/path/to/ComfyUI/` 为你实际部署的位置。完成后记得重新加载应用服务以便生效[^1]。 ##### b) ComfyUI-JDCN 自动化管理 借助图形化的管理者界面简化复杂流程——只需几步即可快速引入新的模块支持: 1. 进入主面板后点击顶部导航栏上的 “Manager” 图标; 2. 寻找列表里的选项卡标签为“Install Custom Node”的入口; 3. 输入关键词如 'JDCN' 并确认提交请求直至提示成功结束[^2]。 --- #### 4. Nuke 中调用 ComfyUI 功能 针对视觉特效行业从业者而言,可能更倾向于直接嵌套进现有工作流而非单独切换窗口处理素材转换等问题。此时可考虑采用专门适配版解决方案即 *ComfyUI-for-Nuke* ,它提供了无缝衔接两者的桥梁作用[^3]。 该项目主页链接为:https://gitcode.com/gh_mirrors/co/ComfyUI-for-Nuke 。开发者能够依据文档指引轻松达成预期效果。 --- ### 总结 以上涵盖了从零开始构建完整的 ComfyUI 工作区所需的关键环节以及部分高级特性概览。希望这些信息能对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值