自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1244)
  • 收藏
  • 关注

原创 AI Agent开发完全指南:从零基础到精通,MCP+PTC+Skills+Subagents一文搞定!

本文解析Anthropic三大Agent开发机制:MCP+PTC提供标准化工具访问和程序化调用;Skills以"知识胶囊"形式注入专业技能;Subagents实现"分而治之"的任务拆分。三者分别作为连接层、认知层和组织层协同工作,帮助开发者构建高效、可维护的Agent系统,拓展构建Agent系统的思维方式。Anthropic 这家“AI 后期之秀”擅长在 Agent 工程领域“整活”。(技能)与,并在自身的Claude开发平台落地支持。

2025-12-11 11:38:42 624

原创 Google开源了一个能操作电脑的智能体

谷歌开源的computer-use-preview项目是一个让AI直接操控电脑的Agent框架,采用三层架构设计,支持坐标归一化、截图滑动窗口等技术特点。通过自然语言驱动,AI可自主决定点击、输入等操作,但存在成本高、速度慢等局限性。该项目对构建AI智能体具有重要参考价值。嘿,大家好!这里是一个专注于前沿AI和智能体的频道~前两天,谷歌悄咪咪开源了一个叫的项目。可以让AI直接操控你电脑的Agent框架, 对标broswer_use。

2025-12-11 11:22:45 1185

原创 _大模型如何真正“记住”你:揭秘个性化AI Agent的技术底层框架

本文介绍了一个基于RAG的个性化框架,通过持久化记忆、动态用户画像和多智能体协作实现个性化能力。框架以LLM为中枢,实现中央协调、跨源检索、反思校验等六大模式,采用STM/LTM/用户画像等多层次记忆系统。实验表明该框架在检索准确率和回答正确率上优于标准RAG,尤其长对话任务提升显著。个性化评测应以检索命中、正确性、连贯性为主,解决冷启动与主动性问题是未来重点。RAG能搜资料,却很难认识你。这套框架用持久化记忆 + 动态用户画像 + 多智能体协作,把一次次聊天变成可累积的个性化能力。

2025-12-10 11:53:15 704

原创 AI大模型中的Token是什么?(超详细教程)收藏这篇就够了!

概念说明Token模型处理文本的最小单元(字节或子词)Tokenizer负责将文本拆分为 token 的工具模型的分词词典与算法定义可视化 token 分割的工具用途计费、控制上下文长度、文本分块等。

2025-12-08 21:06:38 1469

原创 AI大模型教程(超详细)从零基础入门到精通,Qwen-VL到Qwen3-VL全系列深度解析!

文章详细介绍了阿里云Qwen系列视觉语言模型的演进历程,从Qwen-VL到Qwen3-VL的架构创新与技术突破。包括基于Transformer的改进架构(RMSNorm、SwishGLU、RoPE),视觉编码器优化(2D-RoPE、NaViT),以及原生分辨率支持、多模态旋转位置编码(M-RoPE)等关键技术,不断提升模型对图像、视频的理解能力和计算效率。Qwen-VLQwenQwen-VLQwen2-VLNaViT 支持原生分辨率其它补充Qwen2.5-VLQwen3-VL整体结构。

2025-12-08 20:54:00 602

原创 注意力机制是什么?(Attention in Transformer)

对于人工智能(AI)中的神经网络结构,大多数人必定都略有耳闻,它来自神经生物学中“神经网络”的高度抽象,输入——传输——输出。不过,在AI模型中,“神经元”并非生物学上的细胞,而是用于存储和处理数据的容器;信息轴也不是电信号在突触上的传递,而是一系列数学函数对目标数值的有向变换。在传统的。

2025-12-06 15:26:14 918

原创 为什么我不再倾向于用Dify等智能体开发平台?

本文分享了Dify平台在AI应用开发中的实战经验。Dify能显著提升开发效率,让小团队能完成大公司的活,并使业务标准化。然而,在处理复杂业务逻辑、性能敏感场景和企业架构融合时存在局限性。作者提出"Dify+自研"的双模架构,并针对不同类型开发者提供差异化建议,强调在合适场景使用Dify的重要性。前言在转眼间,与Dify平台相伴已一年有余,为此写下的实战文章也逼近了80篇。从最初的好奇尝试,到如今的深度依赖,我想以一名老开发者的视角,分享这段旅程中的真实感悟。

2025-12-06 14:51:18 895

原创 AI大模型意图识别实战教程(超详细)从零入门到精通,一篇搞定!

意图识别核心在于 “针对性优化 + 持续迭代”。通过定期分析 bad case,定位未覆盖的表达场景、跨领域混淆点等问题,再通过补充数据、调整阈值、优化 prompt 等方式迭代。

2025-12-05 11:55:44 816

原创 智能体变笨了是什么原因?怎么优化?

本文详细分析了大模型智能体在多轮对话中出现的性能下降问题,并提出了四大优化方向:上下文长度调整、历史记录管理(控制在6-10轮对话)、提示词优化(明确职责和工具使用)以及工具优化(完善描述和参数验证)。文章强调智能体开发需要反复测试和实验,找到最适合的参数配置,从而提升智能体的质量和稳定性。大模型应用开发,做出来只是开始,做好才是能力。昨天在优化完智能体的记忆功能之后,今天做进一步的测试,然后就发现在多轮对话之后智能体好像变笨了;之前能够回答得很好的问题,现在有点失灵了。

2025-12-05 11:40:00 1611

原创 从RAG+MCP+Agent到企业落地,一篇精通!

文章阐述企业级AI架构三大核心组件:RAG提供企业内外知识访问能力,MCP实现业务工具调用执行能力,Agent整合前两者实现自主任务规划与执行。三者与LLM形成闭环,使AI从"能回答问题"升级为"能完成任务",是企业智能化落地的关键技术路径。如今企业都在“上LLM”,但很多企业落地后发现,只靠大模型:能聊天对话,但不能关联自己的企业数据;只靠 RAG(Retrival-Augmented Generation,检索增强生成):能查数据,但不会执行业务动作;缺少工具调用导致无法对接真实系统;

2025-12-04 15:51:50 734

原创 DeepSeek真的不如Gemini?

本文详细介绍了如何结合MediaMTX流媒体服务器和YOLO11计算机视觉模型实现AI视频实时处理与识别。MediaMTX负责视频流的接收、转换与分发,YOLO11提供目标检测等视觉能力。文章对比了两者的特性和应用场景,并提供了从拉流、推理到推流的完整处理管道构建方法,帮助开发者快速实现实时AI视频分析系统。最近去探查了一些 AI 视频的项目,在公司做了一个视频巡检的项目,我没想到 AI 写 AI 竟然会这么简单。这次 借助 Gemini 3 帮我完成的,来分享一下自己的思路。

2025-12-04 11:36:20 627

原创 Transformer架构完全指南(超详细图解)从零基础到精通,一篇顶十篇!

Transformer架构通过自注意力机制取代RNN实现并行计算,由输入模块、编码器、解码器和输出模块构成。编码器包含N个相同层,每层有多头自注意力和前馈网络,配合残差连接和层归一化;解码器在此基础上增加encoder-decoder注意力层。输入模块处理文本嵌入和位置编码,输出模块通过线性层和softmax生成最终预测。这种结构有效捕捉序列中的长距离依赖关系,成为现代大模型的基础架构。

2025-12-02 11:49:52 559

原创 AI大模型提示词宝典(超实用)从入门到精通,400+创意应用案例,收藏这一篇就够了!

本文分享了400+ Nano Banana Pro图片风格转换提示词及应用创意,涵盖食物美化、拆解图、发型生成、商品制作展示、穿搭、自拍、漫画创作和植物病虫害诊断等多个领域。作者强调优质提示词可转化为实用应用,并提供具体案例和详细提示词模板,帮助读者快速上手AI图像生成,创造有价值的产品内容。

2025-12-02 11:46:20 1233

原创 Agents 2.0从入门到精通,LangChain Deep Agents实战指南,建议收藏!

深度 Agent 的价值在于把“LLM 工具循环”升级为“可工程化的长期系统”:以规划—委派—持久记忆—人类在环为核心支柱,借助 LangGraph 的有状态编排与 DeepAgents 的中间件能力,支撑小时到天级的复杂任务,并提供可恢复与可观测。

2025-12-01 11:50:44 579

原创 深入AI Agent内核——Google gemini-cli的源码架构

从直观的能力演示到深入的源码剖析,我们一同拆解了 gemini-cli 的内部构造,并探讨了其背后的架构思想。至此,我们可以清晰地看到,gemini-cli 不止是一个功能丰富的命令行工具,它更是一个关于如何构建AI Agent 、有价值且可供参考的工程范例。

2025-12-01 11:35:58 679

原创 AI大模型实战教程(超详细)从零基础到项目实战,一篇收藏,小白程序员入门必看!

文章分享了大模型应用开发从小白到入门的心路历程,经历了从简单调接口到理解开发流程,再到发现流程正确但结果不理想的阶段,最终认识到真正入门需要理解大模型能力并与业务需求相结合。作者强调,理解大模型基本能力并将其与业务需求结合是开发人员应具备的基础能力。大模型应用开发从小白到真正入门,需要理解大模型的基本能力,还要理解怎么和业务需求相结合。真正从事大模型应用开发到现在,差不多有一两年时间了;

2025-11-29 12:01:44 1018

原创 【实战】基于Dify智能体开发平台开发一个目标检测智能体

本文详细介绍了基于Dify智能体开发平台的目标检测模型从训练到业务落地的全流程。通过小南瓜平台上传样本并生成训练数据,配置模型训练参数获取模型地址。在Dify中搭建智能体,使用HTTP节点处理图片上传和模型调用,通过LLM节点汇总检测结果。测试验证了模型在识别不同数量目标物品及无目标场景下的准确性,展示了目标检测技术在真实业务中的应用价值。本文我们将基于Dify智能体开发平台讲解目标检测小模型从训练到实际业务落地的全流程本文假设你对Dify智能体开发平台和小南瓜开发平台已有基本的了解一、业务需求。

2025-11-29 11:33:39 638

原创 别再混淆了!RAG、LangChain与Agent的真实关系

本文深入解析了RAG、LangChain和Agent这三大AI技术的本质区别与协同关系。RAG作为知识库扩展技术,LangChain作为开发框架,Agent作为智能应用形态,三者各司其职又相互配合。文章结合企业级项目经验,详细阐述了三者的技术实现、落地难点和最佳实践,帮助开发者避免技术选型误区,构建高效稳定的企业级AI应用。这是个极具代表性的问题——过去十八个月里,无论是刚入行的算法工程师,还是从传统开发转型AI的技术人,几乎都问过我同样的困惑。

2025-11-29 11:16:19 749

原创 AI大模型实战指南(珍藏版)从零基础到项目落地,一篇全掌握,赶紧收藏!

文章分享了企业成功落地AI智能体的6条核心经验:重构人机协同流程,精准匹配应用场景,系统性培养AI能力,建立全程监控机制,构建能力中台实现复用,以及实现人机协作的价值升级。强调AI落地应以"价值思维"而非"技术思维"为导向,通过流程重构、场景匹配、能力培养等方式,真正实现AI技术与业务价值的融合,提升企业业绩。一位制造业老板曾向我吐槽:“花200万上了AI智能体,客服嫌难用、技术喊维护累,三个月只省了几个录入岗,连投入零头都没赚回。这不是个例。

2025-11-28 13:52:17 762

原创 大模型Agent业务落地:少即是多的减法艺术(图解+代码)大模型Agent业务落地:少即是多的减法艺术(图解+代码)

做 Agent 不是“加法竞赛”,而是“减法艺术”。把信息、工具、流程都减到“必要且充分”,再用文件系统把“长材料与中间态”卸载到对话之外——你的 Agent 会更稳、更快、更省,也更容易在真实业务里长期留存与复用。Less, but better. 先做减法,再谈进化。

2025-11-28 11:52:01 310

原创 RAG高级技术完整教程-迪士尼智能客服全案例【上】

为什么要学RAG高阶技术?

2025-11-27 14:01:22 959

原创 AI Agent 正在重塑一切:从“执行命令”到“完成目标”

在过去,我们使用 ChatGPT 时,我们扮演的是“老板”,而 ChatGPT 是“实习生”。

2025-11-27 13:47:25 1014

原创 别再瞎选了!3分钟带你彻底搞懂Dify、Coze、n8n的区别

*具体来说,工作流(Workflow)**是一组由多个节点按特定顺序编排而成的可执行指令集合,旨在实现特定业务逻辑或完成既定任务。随着AI技术的不断发展,为降低AI技术的使用门槛,基于图形用户界面(GUI)的零代码或低代码节点式AI工作流框架逐渐兴起。本质上,GUI节点式工作流 = 可视化 DAG 编排 + 零/低代码封装 + 及时执行。

2025-11-27 11:13:24 479

原创 用LangChain搭建智能客服,从零基础入门到精通!

LangChain大大降低了大模型应用的门槛,让你不再需要从零写复杂代码,而是专注于业务逻辑的设计。无论你是想做智能客服、自动报表生成、还是内部知识助手,都可以用这个框架快速实现。

2025-11-25 15:37:24 1014

原创 一文读懂谷歌最强大模型Gemini_3:下半年最大惊喜!

本文详细分析了Google最新发布的Gemini 3大模型,它在基准测试中全面超越GPT-5等竞品,展现出强大的多模态理解、编码能力和Agent功能。Gemini 3在前端生成UI方面取得突破,成为首个融合通用Agent能力的产品,标志着Google在AI领域的强势回归。其性能提升证明Scaling Law依然有效,预示AI正从聊天机器人时代向数字同事时代转变,为用户提供了更强大的AI助手体验。

2025-11-25 15:11:56 1117

原创 自动化知识图谱构建全攻略(超详细)从零基础到专家级应用,收藏这一篇就够了!

"灵丹0"自动化知识图谱构建系统通过LLM实现数据发现、智能建模、一键抽取评估入库,支持自然语言描述任务,无需专业知识。系统能智能定位有价值数据,自动设计模型,抽取知识图谱并导入本地neo4j,大幅缩短项目周期至少4周+,完全本地实现确保数据安全。过去2年!雄哥做了大量的MAS+知识图谱内容!从最靠基本功的文档预处理、LLM抽取、评估消歧、高速通道入库!我们发现,每个项目任务不同,所需知识不同,数据处理的方法也,全不相同!这!无法标准化交付!于是,雄哥想,有没有通用的+自动干活的方案?

2025-11-22 11:56:53 678

原创 告别微调!腾讯提出Training-Free_GRPO:从零基础入门到精通,收藏这篇就够了!

Training-Free GRPO模仿传统GRPO的多轮学习机制,但完全不更新模型参数。其核心是维护一个经验知识库,在每轮迭代中,模型根据当前经验生成多个答案,评估它们的质量,并总结出“成功经验”或“失败教训”,更新到知识库中。后续查询时,模型会参考这些经验,从而提升表现。上图对比了传统GRPO与Training-Free GRPO的流程。传统GRPO通过梯度更新参数,而Training-Free GRPO通过更新上下文中的经验库来实现优化。新范式。

2025-11-22 11:30:19 907

原创 Qwen3-VL视觉语言模型源码全解析:零基础入门到精通,一篇搞定多模态AI,必学收藏!

本文详细解析了Qwen3-VL视觉语言模型的源码实现,从图像预处理到模型输出的完整流程。重点分析了Qwen3VLProcessor处理图像数据、Qwen3VLModel融合文本与图像特征、以及Qwen3VLVision视觉编码器的实现。通过源码剖析,展示了模型如何将图像转为pixel_values,并与文本数据结合,最终通过语言模型生成输出,为理解多模态AI提供了实践指导。

2025-11-21 15:03:02 645

原创 AI Prompt 提示词工程指南

从 Chatbot 与用户的聊天记录,可以总结出一些有价值的数据,比如用户画像(生日、性别等),或者关键的一些记忆点(重要的事情)。在长对话中,这种总结提炼的方式,可以让数据的保鲜期更久,用户也能得到更为贴近自己的对话体验。===- Title: 对话提炼提示词- Author: 无限回响===# 角色设定你是一个贴心的聊天记录分析助手,专门总结用户特征和重要信息。

2025-11-21 11:34:54 943

原创 对象提了个需求,为了完成它具象化了大模型Agent工作流!

文章通过日语字幕翻译案例,对比了四种AI应用方法:直接对话、编程实现、Agent对话和工作流。不同方法在灵活性、可靠性和实现难度上各有优劣。直接对话简单但受限,编程实现稳定但需技术能力,Agent自动化强但过程不可控,工作流可视但可能过度复杂。作者强调应根据业务需求合理选择技术方案,并非所有任务都需要最新AI技术,实用性和效率才是关键。最近对象提了个需求,很简单,就是把一个日语的字幕文件,翻译成中文,得到一个中文的字幕文件。字幕文件.srt 里面的格式是这样的翻译后的文件像这样即可。

2025-11-19 11:38:39 1775

原创 Dify知识库图文混排到底应该怎么做,两种主流方案,一次讲清,看完收藏!

核心收益•灵活性高:知识库源文件(Markdown)和图片资源(图床)是分离的,未来无论迁移到哪个系统,都非常方便。•方便管理:图片资源集中在图床(如 OSS)管理,查找、替换都很方便。但是缺点•成本:需要额外的图床服务器或对象存储服务费用。•运维:需要处理图床的访问权限、白名单(就像我遇到的 Referer 问题),甚至要多维护一个系统。所以word方案总结下来,就是成本短期相对低一些,不需要单独的图床服务器,图片存储在dify的 Docker 卷中,开箱即用。

2025-11-19 11:24:44 878

原创 LLMs、RAG、AI Agent三个到底什么区别?

未来不在于选择其一。而在于将三者结合起来进行架构设计。用于思考的 LLMs。用于认知的 RAG。用于执行的Agent。由此才能够构建出AI智能时代。

2025-11-18 14:23:56 1096

原创 大模型部署神器!Nano-vLLM轻量化实现教程(非常详细)从入门到精通,看这一篇就够了,建议收藏!

文章介绍了GitHub 2025年度趋势报告中AI基础设施项目的发展情况,重点讲述了轻量级vLLM实现——Nano-vLLM项目。该实现保留了vLLM核心功能但代码库更简洁(约1200行Python),支持快速离线推理,提供优化套件。文章详细介绍了安装、使用方法,并通过性能测试显示其在小模型部署上表现优于原版vLLM,时延更小,吞吐量更大。

2025-11-18 14:04:11 1080

原创 为什么大多数_Agent_会失败?

随着行业的发展,越来越多的开发者开始将他们的 Agent 应用推向生产环境。此时,Tracing 功能(追踪)自然地延伸到了生产环境的 Observability (可观测性) 领域。但新的问题也随之而来:当用户每天向 LangSmith 发送数百万甚至更多的追踪数据时,他们该如何从这些海量信息中挖掘出真正的价值?这就是新功能 Insights 洞察诞生的背景,现在的客户已经度过了从 0 到 1 构建 Agent 的阶段,他们面临的是生产环境中的海量数据。

2025-11-17 15:43:16 594

原创 详解Github_35K+项目:打通200+数据源,构建企业级AI数据融合应用!

文章介绍了MindsDB这款开源AI数据统一访问引擎,展示了如何实现跨多数据源的统一查询和AI模型赋能数据查询。MindsDB作为"智能数据层",通过连接器对接各种异构数据源,提供统一API,并集成机器学习引擎为数据查询注入AI能力。文章详细演示了如何使用MindsDB连接RDBMS、文件、向量数据库等数据源,以及如何通过SQL调用传统ML模型、LLM和嵌入模型,实现数据与AI的无缝融合,简化AI应用开发流程。前几天我们提到企业AI数据环境的复杂性,远非单一的向量库能胜任。

2025-11-14 11:57:47 753

原创 放着Coze和Dify不用,我喜欢上商汤新开源本地Agent

文章介绍了LazyCraft这一开源AI Agent开发和管理平台,由商汤基于LazyLLM构建。相比Coze和Dify,LazyCraft提供了多用户权限管理、本地和云端模型支持、模型微调、可视化搭建等企业级功能。文章详细阐述了其安装过程(仅需一行命令)、模型管理方式、MCP接入方式等优势,并强调其开源特性使企业能够完全掌控自己的AI系统,适合需要物理隔绝或团队协作的场景。我接过很多Agent智能体定制的单子,

2025-11-14 11:46:30 973

原创 AI智能体评估方法详解(收藏必备)从黑盒测试到轨迹分析,一篇搞定所有评估技术!

本文详细介绍了AI大模型智能体评估的三种核心方法:最终响应评估关注业务结果,单步评估快速定位问题,轨迹评估全面监控执行过程。三种方法各有优缺点,需根据场景组合使用。文章提供了每种方法的实践建议、评估指标及组合策略,帮助开发者构建可靠且可诊断的智能体系统,确保在真实业务中的表现。

2025-11-07 14:26:29 1155

原创 主动式RAG的优势——Agentic_RAG能够执行动作,一篇就够了!

文章对比了传统RAG与Agentic RAG的区别:前者仅能语义匹配,适合概念说明场景;后者能执行"动作"(如API调用、SQL生成),适合数据分析场景。两者本质都是检索技术,但Agentic RAG增加了条件查询能力。实际业务中常需结合使用,应对用户复杂需求。传统RAG和Agentic RAG的主要区别就是在于是否能执行“动作”。我们都知道基础RAG是基于语义检索的知识增强技术,但由于复杂的语义环境,很多时候基于简单的语义检索并不能很好的解决我们的问题。

2025-11-06 14:44:03 589

原创 AI大模型全攻略:从零基础入门到精通,一篇就够了!

文章解释了AI大模型中的三个关键概念:训练(从零开始塑造通用AI"大脑")、微调(在基础模型上赋予专业"人格")和知识库(外部信息集合,回答训练数据外问题)。三者构成相辅相成的三层架构,共同打造出真正实用的AI应用。国务院正式印发《关于深入实施"人工智能+"行动的意见》之后,各地各单位相继发布了人工智能+行动计划、发展规划、执行方案等等。“人工智能”一词瞬间又成为朋友们茶余饭后谈论的热点话题。

2025-11-06 14:26:19 587

原创 AI智能体记忆完全指南(超详细):从RAG到智能体记忆的演进,收藏这一篇就够了!

本质上,RAG、AI 智能体化 RAG 和 AI 智能体记忆的核心差异,在于 “如何对外部知识源(比如:文本文件、数据库)中存储的信息进行创建、读取、更新和删除(CRUD)”。类型信息存储方式信息检索方式信息编辑与删除方式RAG在摄入阶段离线进行一次性检索需手动操作AI智能体化 RAG在摄入阶段离线进行通过工具调用动态检索需手动操作AI 智能体记忆通过工具调用动态存储通过工具调用动态检索通过工具调用动态操作。

2025-11-06 11:59:37 1072

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除