《哪吒2》电影数据分析与可视化教程
一、项目背景与目标
《哪吒2》上映后备受关注,通过对影评数据的分析和可视化,我们希望了解观众对电影的评价倾向,挖掘观众关注的焦点内容,从而为电影制作方、发行方以及其他相关方提供有价值的反馈信息。
二、借助豆包确定技术选型
在开始项目之前,借助我(豆包)来确定所需的技术工具,针对本项目,我们选择以下Python库:
1. Pandas:强大的数据处理和分析库,用于读取、清洗和分析数据。
2. NLTK(Natural Language Toolkit):自然语言处理工具包,用于对评论内容进行文本处理,如分词、词频统计等。
3. Matplotlib:基本的数据可视化库,用于绘制各种图表。
4. WordCloud:用于生成词云,直观展示文本中出现频率较高的词汇。
三、项目步骤及代码实现
1. 数据读取
python
import pandas as pd
# 使用Pandas读取影评数据
try:
data = pd.read_csv('nezha2_reviews.csv')
except FileNotFoundError:
print("数据文件未找到,请检查文件路径和文件名。")
2. 数据初步查看
python
# 查看数据的前几行,了解数据的基本结构
print(data.head())
# 查看数据的基本信息,包括列的数据类型、非空值数量等
print(data.info())
# 查看评分的统计摘要,了解评分的分布情况
print(data['评分'].describe())
3. 数据清洗
数据清洗过程中,可能会遇到数据缺失、重复值、异常值等问题,借助我来获取解决方案。
python
# 检查缺失值
missing_values = data.isnull().sum()
print(missing_values)
# 删除含有缺失值的行
data = data.dropna()
# 检查重复值
duplicate_rows = data.duplicated()
print(duplicate_rows.sum())
# 删除重复行
data = data.drop_duplicates()
4. 数据分析
评分分析
python
# 统计不同评分的评论数量
rating_counts = data['评分'].value_counts()
print(rating_counts)
评论时间分析
python
# 将评论时间转换为datetime类型
data['评论时间'] = pd.to_datetime(data['评论时间'])
# 按日期统计评论数量,观察评论发布的时间趋势
daily_review_counts = data.groupby(data['评论时间'].dt.date())['用户ID'].count()
print(daily_review_counts)
5. 文本分析(借助NLTK)
python
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.probability import FreqDist
# 下载所需的NLTK数据
nltk.download('punkt')
nltk.download('stopwords')
# 定义中文停用词
stopwords_ch = stopwords.words('chinese')
# 对评论内容进行分词和词频统计
all_words = []
for review in data['评论内容']:
tokens = word_tokenize(review)
filtered_tokens = [token for token in tokens if token not in stopwords_ch]
all_words.extend(filtered_tokens)
freq_dist = FreqDist(all_words)
print(freq_dist.most_common(20)) # 输出出现频率最高的20个词
6. 数据可视化
评分分布柱状图
python
import matplotlib.pyplot as plt
# 绘制评分分布柱状图
plt.bar(rating_counts.index, rating_counts.values)
plt.xlabel('评分')
plt.ylabel('评论数量')
plt.title('《哪吒2》评分分布')
plt.show()
评论时间趋势折线图
python
# 绘制评论时间趋势折线图
plt.plot(daily_review_counts.index, daily_review_counts.values)
plt.xlabel('日期')
plt.ylabel('评论数量')
plt.title('《哪吒2》每日评论数量趋势')
plt.xticks(rotation=45)
plt.show()
词云生成
python
from wordcloud import WordCloud
# 生成词云
wordcloud = WordCloud(width=800, height=400, background_color='white', font_path='simhei.ttf').generate_from_frequencies(freq_dist)
# 显示词云
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title('《哪吒2》评论关键词云')
plt.show()
四、总结与拓展
通过以上步骤,我们借助我(豆包)完成了对《哪吒2》影评数据的分析与可视化。在实际项目中,遇到的问题可能更加复杂,比如更复杂的文本处理需求、大规模数据的处理等,都可以随时向我咨询解决方案。
未来可以进一步拓展这个项目,例如使用情感分析技术对评论进行情感倾向判断,分析不同情感倾向的评论在评分、时间等维度上的差异;还可以结合电影的票房数据、社交媒体热度数据等进行多维度分析。