Python
文章平均质量分 69
记录在python开发过程中用到的知识点和解决方案。
优惠券已抵扣
余额抵扣
还需支付
¥299.90
¥399.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
安替-AnTi
研究生在读
展开
-
idxmax和idxmin函数详细用法
idxmax是 Pandas 的一个方法,用于返回最大值所在的第一个索引。它可以应用于Series或DataFrame:返回 Series 中最大值的索引标签。:返回 DataFrame 中每列的最大值所在的行标签(默认),若axis=1,则返回每行的最大值所在的列标签。在 Pandas 中,idxmax是一种便捷方法,适用于寻找数据中最大值的位置,而不仅仅是最大值的大小。idxmin的用法和参数与idxmax:返回 Series 中最小值的索引标签。原创 2024-10-28 19:25:03 · 64 阅读 · 0 评论 -
DataFrame.all()函数用法
方法用于判断DataFrame的所有元素(沿着某个指定轴)是否都满足条件。常见应用场景包括检查数据是否为空、验证数据中的布尔值是否都为True等。方法是Pandas中一个实用的功能,可以轻松地检查DataFrame中的元素是否满足某种条件。通过灵活设置参数(如axisbool_only和skipna),我们可以根据不同的需求来验证数据。希望本文的讲解和案例能够帮助你在数据分析工作中更好地使用。原创 2024-10-25 17:19:33 · 55 阅读 · 0 评论 -
random.sample 函数详解
是一个非常实用的函数,适用于多种数据类型的无放回随机采样。无论是处理小规模数据,还是需要在大规模数据集上抽样分析,都可以利用来实现。在数据科学、游戏开发以及抽奖系统等多种领域,都是一个不可或缺的工具。希望这篇文章能帮助大家更好地理解和使用函数!原创 2024-10-25 17:03:19 · 157 阅读 · 0 评论 -
Counter()函数统计元素出现频率
Counter()是 Python 中一个非常强大和灵活的工具,它简化了对元素频率的统计操作。无论是处理列表、字符串,还是多个Counter对象之间的运算,Counter都能提供高效、简洁的解决方案。它可以作为统计频率和处理集合运算的绝佳选择,广泛应用于数据分析、文本处理等多个领域。原创 2024-10-22 18:19:43 · 115 阅读 · 0 评论 -
itertools.chain() 函数详解
在 Python 中,itertools模块提供了一组用于的函数,这些函数可以帮助我们优化内存使用并简化代码逻辑。是其中一个常用的函数,用于将多个可迭代对象(如列表、元组等),形成一个单一的迭代器。在这篇博客中,我们将详细介绍的用法、工作原理以及典型的应用场景。原创 2024-10-16 17:50:23 · 63 阅读 · 0 评论 -
深入理解 Python 的 concurrent.futures 模块
是 Python 标准库中的一个模块,旨在简化并发编程。它提供了一种高层次的接口,用于异步执行任务,并支持线程池和进程池。这使得开发者能够轻松地管理并发执行的任务,从而提高程序的性能。原创 2024-10-14 17:09:27 · 188 阅读 · 0 评论 -
使用 `tqdm` 在 Python 中创建进度条详解
tqdmdesc:可以为进度条添加描述文本。total:可以手动设置总任务数,适用于未知长度的迭代器。ncols:设置进度条显示的宽度。bar_format:自定义进度条的格式。这段代码中,bar_format指定了进度条的格式,包括当前的迭代次数、总次数以及经过的时间。原创 2024-10-11 19:10:26 · 98 阅读 · 0 评论 -
python透视表pivot_table用法
简单来说,pivot_table 用于汇总数据。它允许你根据某些列进行分组,并对其他列的数据进行聚合统计。pivot_table 提供了很大的灵活性,可以指定如何聚合(如求和、求平均、计数等),并可以根据不同的索引和列进行透视。sort=True)data类型:DataFrame描述:要进行数据透视的 DataFrame。values类型:string、list-like、或None描述:要聚合的列名称。指定你希望通过 aggfunc 聚合的列。如果为 None,则会聚合所有数值列。原创 2024-10-10 17:46:08 · 176 阅读 · 0 评论 -
如何对python代码进行混淆
目前市面上没有任何方法能够完全避免你的程序被人反编译。即便是3A游戏大作,发布出来没多久也会被人破解。现在只能做到增大反编译的难度,让程序相对无法那么快被破解。我们知道,Python代码默认是公开的。当你要把一个Python项目给别人运行的时候,一般来说别人就能看到你的全部源代码。我们可以使用对代码进行打包,编译成.或者是可执行文件,从而在一定程度上避免别人看到你的源代码。Cython、Nuitka在打包大型项目时,需要写大量的配置文件甚至是额外的程序,有一定的使用成本。原创 2024-08-05 08:58:00 · 166 阅读 · 0 评论 -
装饰器处理超时函数退出&线程堵塞场景、处理方式
在购物场景中,一个常见的线程堵塞案例可能涉及到库存管理。线程堵塞通常发生在多线程程序中,当一个线程在等待某个条件满足或等待其他线程释放资源时,它会停止执行,进入"堵塞"状态。什么是线程阻塞:在某一时刻某一个线程在运行一段代码的时候,这时候另一个线程也需要运行,但是在运行过程中的那个线程执行完成之前,另一个线程无法获取到CPU执行权,这时就会造成线程阻塞。输出结果如下,task在等待3秒后,退出程序,导致后面的语句没有执行,导致线程堵塞,因为上面只有一个主线程,没有创建其他线程。原创 2023-12-26 17:12:42 · 1004 阅读 · 0 评论 -
浅拷贝和深拷贝
浅拷贝:仅复制对象的第一层,子对象仍然是共享的。深拷贝:完全复制整个对象,包括所有层级的子对象,新对象完全独立于原对象。在实际编程中,选择使用浅拷贝还是深拷贝取决于你的具体需求,特别是你是否需要完全独立的对象副本。原创 2023-12-26 16:07:13 · 403 阅读 · 0 评论 -
numpy中一些常见计算
总而言之,虽然方差提供了离散程度的数学定义,但标准差因为其直观性和实用性,在实际应用中更为广泛。它提供了一种简单、直观的方式来描述数据的变异性,并且在许多统计方法和实际应用中都非常重要。总而言之,方差提供了一种量化数据波动性和不确定性的方式,对于理解数据集的特性、评估风险和不确定性以及进行科学研究都至关重要。在一个numpy数组求和、均值时,如果这个数组里包含了nan,则程序会报错或者求出来的值是nan,如下代码所示。方差是统计学中衡量数据离散程度的一个重要指标。方差越大,表示数据的分散程度越高;原创 2023-12-22 19:33:45 · 920 阅读 · 0 评论 -
apply&lambda&agg函数用法
求每一列平均值求每一行的均值支持匿名函数df.apply(lambda x : x.max() - x.mean())#列对每个值运算自定义函数及传参对部分列进行操作结合if的用法。原创 2023-12-22 19:28:56 · 417 阅读 · 0 评论 -
Python基于joblib的并行计算&进程&线程&multiprocessing多核并行计算
总的来说,joblib是一个非常适用于需要大规模并行处理和缓存重复计算结果的任务的库,特别是在数据密集型的应用中,如机器学习、数据预处理和科学计算。X, y,这段代码的意思非常简单,即是用n_jobs个CPU来计算函数,其中参数为而这里只有作为被枚举的变量,其它参数始终保持不变。至于里为何要用clone函数是因为如果直接将传入的话,这个模型在外部也将会被改变。具体原因可以参看其它文档。原创 2023-12-19 21:05:37 · 1619 阅读 · 0 评论 -
Python--traceback模块的基本用法(异常处理)
在日常开发中,我们会做一些基本的异常处理,但是有时候只能打印我们处理的结果或者将异常打印出来,不能直观的知道在哪个文件中的哪一行出错。try:print("错误信息:", e)func(1, 0)运行结果:try:except:func(1, 0)运行结果:此错误输出包含诊断问题所需的所有信息。错误输出的最后一行一般会告诉你引发了什么类型的异常,以及关于该异常的一些相关信息。错误信息的前几行指出了引发异常的代码文件以及行数。Python官网中有关traceback介绍。原创 2023-10-08 10:18:24 · 425 阅读 · 0 评论 -
matplotlib可视化之柱状图plt.bar()
水平柱状图和垂直柱状图基本一样,只是X和Y,height和width相反。原创 2023-07-14 10:07:24 · 442 阅读 · 0 评论 -
Python求多个list的交集、并集、差(补)集的方法
【代码】Python求多个list的交集、并集、差(补)集的方法。原创 2023-07-13 14:11:12 · 333 阅读 · 0 评论 -
python多维数据可视化
多维度(3维以上)数据的可视化,用常规的方法不太好实现。本文介绍几种用Python实现的将多维数据展示在二维平面中的方法。原创 2023-07-01 19:43:52 · 977 阅读 · 0 评论 -
npy文件的读出与修改
npy 文件用于存储重建ndarray 所需的数据、图形、dtype 和其他信息。常用的IO 函数有: load() 和save() 函数是读写文件数组数据的两个主要函数,默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为. npy 的文件中。1.首先自己写一个.npy文件,使用np.save(‘test.npy’,dict)方法python。根据字典的key来修改对应的value(例如:修改 ‘lan’=‘js’)由于.npy文件的类型是dict,所以读出需要使用。读修改的新文件的结果。原创 2023-06-30 17:25:24 · 1253 阅读 · 0 评论 -
python 合并文件夹下所有csv文件
这样,您就可以轻松地将一个文件夹下的所有CSV文件合并为一个DataFrame了。注意,这里的index=False表示不保存DataFrame的索引列。如果您需要保存索引列,可以将该参数设为True。可以使用Python中的os和pandas库来合并文件夹下所有的CSV文件。原创 2023-06-30 17:18:08 · 771 阅读 · 0 评论 -
查找最大或最小的 N 个元素
并且剩余的元素可以很容易的通过调用 heapq.heappop() 方法得到, 该方法会先将第一个元素弹出来,然后用下一个最小的元素来取代被弹出元素(这种操作时间复杂度仅仅是 O(log N),N 是堆大小)。如果你想在一个集合中查找最小或最大的 N 个元素,并且 N 小于集合元素数量,那么这些函数提供了很好的性能。类似的,如果 N 的大小和集合大小接近的时候,通常先排序这个集合然后再使用切片操作会更快点 (如果你仅仅想查找唯一的最小或最大(N=1)的元素的话,那么使用。可以完美解决这个问题。原创 2023-06-16 09:27:54 · 130 阅读 · 0 评论 -
python获取指定目录下的所有指定后缀的文件名
代码如下。原创 2023-06-05 09:03:25 · 644 阅读 · 0 评论 -
内存不够大?python如何对内存进行优化
python一切皆对象,普通的值的传递只是引用的传递。垃圾回收是 Python自带的机制,用于自动释放不会再用到的内存空间引用计数是其中最简单的实现,这只是充分非必要条件。原创 2023-05-16 14:48:13 · 557 阅读 · 0 评论 -
GMT时间与Datetime相互转换
由于服务器返回的时间是http头部时间,时间格式为‘Tue, 08 May 2018 06:17:00 GMT’,现在想将它转换成‘2018-05-08 06:17:00’这种。原创 2023-05-05 09:07:19 · 409 阅读 · 0 评论 -
Pyecharts Geo绘制可视化地图并展示坐标位置
但是当运行程序后会发现地图上并没有多什么东西,因为这里添加的是坐标点,我们并没有给坐标点添加一个系列也没有给坐标点附加图形样式,所以在地图上并不会显示,但这两个点确确实实添加了上去,因为这样我们可以对这些点进行分类,还能让不同类的坐标点以不同的形式展现。系列颜色被选中时全局配置项里有一个文本配置项,我们需要用到pyecharts.optinons里的TextStyleOpts函数对文本颜色进行配置。这两个配置项里面有很多的配置项,这里很难一一讲解,只能说,需要改变某一项的属性,我们首先先去查官网.原创 2023-03-31 09:40:02 · 1527 阅读 · 0 评论 -
【Python】京东抢购脚本
此时验证 Ticket 有效后使用 pickle 库将程序会话中的 cookie 保存到本地以便下次使用。可以参考pyinstaller或者auto-py-to-exe用法。由于使用账号密码时有验证码限制,此处采用扫码登录方式绕过。编写脚本监听商品库存,一旦查询到货源便开始尝试自动下单。采用京东 WEB 端接口实现我们的脚本程序。进行抓包分析,找到几个有用接口.抢购成功增加微信通知。转载 2023-02-14 01:49:47 · 13245 阅读 · 4 评论 -
python tqdm教程
tqdm是python中打印进度条的一个简易工具包,可以方便查看循环的进度。具体见。原创 2023-04-24 21:10:00 · 700 阅读 · 0 评论 -
编写一个只允许有限次数尝试正确输入内容的代码
密码输入错误三次,就会自动退出,否则不断尝试,直到输入正确才会退出程序。原创 2023-03-31 09:48:44 · 132 阅读 · 0 评论 -
seaborn绘制小提琴图
鸢尾花数据皆是数值型,小提琴图对数值型数据比较友好。原创 2023-03-30 10:20:46 · 154 阅读 · 0 评论 -
lambda 中if-elif-if用法
【代码】lambda 中if-elif-if用法。原创 2023-03-27 15:49:31 · 537 阅读 · 0 评论 -
Python List index()方法
index() 函数用于从列表中找出某个值第一个匹配项的索引位置。原创 2023-03-27 14:55:47 · 335 阅读 · 0 评论 -
Python list列表删除元素的4种方法
大部分编程语言都会提供和 pop() 相对应的方法,就是 push(),该方法用来将元素添加到列表的尾部,类似于数据结构中的“入栈”操作。需要注意的是,remove() 方法只会删除第一个和指定值相同的元素,而且必须保证该元素是存在的,否则会引发 ValueError 错误。del 是 Python 中的关键字,专门用来执行删除操作,它不仅可以删除整个列表,还可以删除列表中的某些元素。除了 del 关键字,Python 还提供了 remove() 方法,该方法会根据元素本身的。原创 2023-03-27 14:37:25 · 1610 阅读 · 0 评论 -
python切片操作
在Python中,切片(slice)是对序列型对象(如liststringtuple)的一种高级索引方法。普通索引只取出序列中一个下标对应的元素,而切片取出序列中一个范围对应的元素,这里的范围不是狭义上的连续片段。下面的代码初步展示了切片索引的力量。切片操作是Python中非常常见的,但是网上却很难找到全面系统的解析,比如以下结果是否让人有些迷惑为什么有len(a)和省略len(a)结果会不一样?本文致力于真正讲清楚Python切片的使用方法。原创 2023-01-13 14:15:37 · 556 阅读 · 0 评论 -
Python中的args和kwargs
在Python中的代码中经常会见到这两个词 args 和 kwargs,前面通常还会加上一个或者两个星号。其实这只是编程人员约定的变量名字,。这其实就是 Python 中可变参数的两种形式,并且 *args 必须放在 **kwargs 的前面,因为位置参数在关键字参数的前面。原创 2023-01-13 10:38:35 · 2602 阅读 · 1 评论 -
Python SQLAlchemy介绍
SQLAlchemy是Python中最有名的ORM工具。原创 2023-01-04 14:38:45 · 1158 阅读 · 0 评论 -
第01讲:必知必会,掌握 HTTP 基本原理
本课时我们会详细讲解 HTTP 的基本原理,以及了解在浏览器中输入 URL 到获取网页内容之间发生了什么。了解了这些内容,有助于我们进一步掌握爬虫的基本原理。原创 2022-12-20 11:16:17 · 271 阅读 · 1 评论 -
使用Python Openssl库解析X509证书信息
对于常见的https证书 一般是用crt或者pem来保存, http证书可电器网页前的锁按钮得到, 并且进行导出.这里利用的是python3 的 Openssl 库进行解析, 此库的说明文档如下,通过阅读说明文档, 可以轻松读取证书相关信息。原创 2022-11-07 22:12:56 · 1391 阅读 · 0 评论 -
遍历文件夹,并统计文件夹下文件数量
【代码】遍历文件夹,并统计文件夹下文件数量。原创 2022-11-07 21:40:46 · 683 阅读 · 0 评论 -
Pandas如何追加写入文件
文件格式这里我们以Excel为例,其他文件格式类似。使用Pandas往Excel写数据时是没法像写csv文件一样改个参数即可实现追加想要实现Excel的追加的主要思路为:将原有的数据先读出来,然后与需要存入的数据一并添加即可。先创建一个excel文件data = {原创 2022-10-31 22:51:46 · 683 阅读 · 0 评论 -
使用python下载大型文件的方法,显示进度条和下载时间
stream-True将读取数据的字块大小与接收的区块相同。如果stream=False,则数据将作为单个块返回。设置在请求上时,这可以避免立即将内容读入内存以获得大响应。块大小是它应该读入内存的字节数。这不一定是每个返回的项目的长度,因为解码可以进行。需要在get请求上设置参数stream为True,它不会立即开始下载,当使用iter_content遍历内容或访问内容属性时才开始下载。设置为真,响应内容将根据使用最佳编码进行解码。下载大型文件时,我们一般都是这样下载的。在响应数据上进行重做。原创 2022-10-31 21:37:15 · 1125 阅读 · 0 评论