首先明确自己电脑是否有显卡(GPU),这对接下来配置环境有影响。
其次我们先列出需要安装的软件:
一、Anaconda
Anaconda 是一个用于科学计算的 Python 分发版,它包含了大量常用的科学计算、数学、工程和数据分析等领域的软件包。Anaconda 的主要特点包括:
- 包含大量软件包:Anaconda 包含了超过 7200 个科学计算相关的软件包,这使得用户无需单独安装这些软件包即可进行开发工作。
- Conda 管理器:Anaconda 配备了自己的包管理器 Conda,它可以轻松地安装、更新和卸载软件包,并且可以创建虚拟环境来管理不同项目的依赖关系。
- 跨平台支持:Anaconda 支持 Windows、macOS 和 Linux 操作系统。
- 易于安装和使用:Anaconda 提供了一个图形界面以及命令行工具,使得安装和使用都非常方便。
- Miniconda:对于只需要基本功能的用户,也有 Miniconda 这个轻量级版本可供选择,它仅包含 Conda 和 Python,其他软件包需要用户自行安装。
二、CUDA、CUDNN
CUDA 是由 NVIDIA 开发的一种并行计算平台和编程模型,允许开发者利用 NVIDIA GPU 进行通用计算。通过 CUDA,可以在 GPU 上执行大规模并行任务,从而大大加快计算速度,尤其是在处理图像、视频和大数据集时。
cuDNN 是专门为深度神经网络设计的 GPU 加速库,它是 NVIDIA 的一项核心技术,专门用于加速卷积神经网络(CNN)、循环神经网络(RNN)和全连接神经网络(FCN)。cuDNN 提供了高度优化的函数库,能够显著提高深度学习框架的性能。
三、编程软件
IDEs 提供了代码编辑、调试、测试等功能,非常适合复杂的项目开发。
PyCharm: 一款非常强大的 Python IDE,支持多种插件和扩展,特别适合大型项目。
安装:访问 JetBrains 官网 下载安装包,按照提示进行安装
VSCode (Visual Studio Code): 轻量级且功能丰富的代码编辑器,支持多种语言,可以通过安装插件来增强 PyTorch 开发体验。安装:访问 VSCode 官网 下载安装包,按照提示进行安装。
插件推荐:安装 "Python" 插件,它提供了语法高亮、代码补全、错误检查等功能;
Jupyter Notebook 是一个基于 Web 的交互式计算环境,非常适合进行实验、教学和演示。
四、一步登天
在 :\anaconda\envs 中下载torch1.10