AVL树的实现

1. AVL的概念

  1. AVL树是最先发明的⾃平衡⼆叉查找树,AVL是⼀颗空树,或者具备下列性质的⼆叉搜索树:它的左右⼦树都是AVL树,且左右⼦树的⾼度差的绝对值不超过1。AVL树是⼀颗⾼度平衡搜索⼆叉树,通过控制⾼度差去控制平衡。
  2. AVL树的实现这⾥我们引⼊⼀个平衡因⼦(balance factor)的概念,每个结点都有⼀个平衡因⼦,任何结点的平衡因⼦都等于右⼦树的⾼度减去左⼦树的⾼度,也就是说任何结点的平衡因⼦都等于0/1/-1,AVL树并不是必须要平衡因⼦,但是有了平衡因⼦可以更⽅便我们去进⾏观察和控制树是否平衡,就像⼀个⻛向标⼀样。
  3. 思考⼀下为什么AVL树是⾼度平衡搜索⼆叉树,要求⾼度差不超过1,⽽不是⾼度差是0呢?0不是更好的平衡吗?画画图分析我们发现,不是不想这样设计,⽽是有些情况是做不到⾼度差是0的。⽐如⼀棵树是2个结点,4个结点等情况下,⾼度差最好就是1,⽆法做到⾼度差是0。
  4. AVL树整体结点数量和分布和完全⼆叉树类似,⾼度可以控制在 logN,那么增删查改的效率也可以控制在 O(logN),相⽐⼆叉搜索树有了本质的提升。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

2. AVL树的实现

2.1 AVL树的结构

// AVL树的节点
template<class K, class V>
struct AVLTreeNode
{
	// 需要用到parent指针,有利于更新平衡因子
	pair<K, V> _kv;
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	int _bf; // balance factor

	AVLTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		,_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_bf(0)
	{}
};

// AVL树
template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	//...

private:
	Node* _root = nullptr;
};

2.2 AVL树的插入

2.2.1 AVL树插入一个值的大概过程

  1. 插⼊⼀个值按⼆叉搜索树规则进⾏插⼊。
  2. 新增结点以后,只会影响祖先结点的⾼度,也就是可能会影响部分祖先结点的平衡因⼦,所以更新从新增结点->根结点路径上的平衡因⼦,实际中最坏情况下要更新到根,有些情况更新到中间就可以停⽌了,具体情况我们下⾯再详细分析。
  3. 更新平衡因⼦过程中没有出现问题,则插⼊结束。
  4. 更新平衡因⼦过程中出现不平衡,对不平衡⼦树旋转,旋转后调平衡的同时,也降低了⼦树的⾼度,不会再影响上⼀层,所以插⼊结束。

2.2.2 平衡因子更新

更新原则:

  1. 平衡因⼦ = 右⼦树⾼度 - 左⼦树⾼度
  2. 只有⼦树⾼度变化才会影响当前结点平衡因⼦。
  3. 插⼊结点,会增加⾼度,所以新增结点在parent的右⼦树,parent的平衡因⼦++,新增结点在parent的左⼦树,parent平衡因⼦–
  4. parent所在⼦树的⾼度是否变化决定了是否会继续往上更新

更新停⽌条件:
5. 更新后parent的平衡因⼦等于0,更新中parent的平衡因⼦变化为-1->0或者1->0,说明更新前parent⼦树⼀边⾼⼀边低,新增的结点插⼊在低的那边,插⼊后parent所在的⼦树⾼度不变,不会影响parent的⽗亲结点的平衡因⼦,更新结束。
6. 更新后parent的平衡因⼦等于1或-1,更新中parent的平衡因⼦变化为0->1或者0->-1,说明更新前parent⼦树两边⼀样⾼,新增的插⼊结点后,parent所在的⼦树⼀边⾼⼀边低,parent所在的⼦树符合平衡要求,但是⾼度增加了1,会影响parent的⽗亲结点的平衡因⼦,所以要继续向上更新。
7. 更新后parent的平衡因⼦等于2或-2,更新中parent的平衡因⼦变化为1->2或者-1->-2,说明更新前parent⼦树⼀边⾼⼀边低,新增的插⼊结点在⾼的那边,parent所在的⼦树⾼的那边更⾼了,破坏了平衡,parent所在的⼦树不符合平衡要求,需要旋转处理,旋转的⽬标有两个:1、把parent⼦树旋转平衡。2、降低parent⼦树的⾼度,恢复到插⼊结点以前的⾼度。所以旋转后也不需要继续往上更新,插⼊结束。

在这里插入图片描述

2.2.3 插入节点及更新平衡因子的代码实现

bool Insert(const pair<K, V>& kv)
{
	if (_root == nullptr)
	{
		_root = new Node(kv);
		return true;
	}

	Node* cur = _root;
	Node* parent = nullptr;
	while (cur)
	{
		if (cur->_kv.first < kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->_kv.first > kv.first)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			return false;
		}
	}

	cur = new Node(kv);
	if (parent->_kv.first < kv.first)
	{
		parent->_right = cur;
	}
	else
	{
		parent->_left = cur;
	}
	// 上面的代码都是二叉搜索树的插入逻辑

	// AVL树还要更新 _parent 指针
	cur->_parent = parent;

	// 更新平衡因子
	
	// parent为根的_parent循环就结束,循环中也有提前终止的条件
	while (parent) 
	{
		// 根据cur插入的左右方向,对parent的平衡因子作出修改
		// 插入在右就++,插入在左就--
		if (cur == parent->_right)
		{
			parent->_bf++;
		}
		else if(cur == parent->_left)
		{
			parent->_bf--;
		}
		
		// 更新停止的4个条件

		// 第一种情况:1->0 / -1->0
		if (parent->_bf == 0) 
		{
			// 更新停止
			break;
		}
		// 第二种情况:0->1 / 0->-1
		else if (parent->_bf == 1 || parent->_bf == -1)
		{
			// 继续向上更新,直到遇到不平衡的节点或nullptr
			cur = parent;
			parent = parent->_parent;
		}
		// 第三种情况:1->2 / -1->-2
		else if (parent->_bf == 2 || parent->_bf == -2)
		{
			// 不平衡了,旋转处理
			// 下面就是旋转的逻辑 

			break;
		}
		// 第四种情况:防止代码有误或者有没有考虑到的情况
		else
		{
			assert(false);
		}
	}
	
	// 插入成功
	return true;
}

2.3 旋转

2.3.1 旋转的规则

  1. 保持搜索树的规则
  2. 让旋转的树从不平衡变平衡,其次降低旋转树的⾼度

旋转总共分为四种,左单旋/右单旋/左右双旋/右左双旋。

说明:下⾯的图中,有些结点给的是具体值,如10和5等结点,这⾥是为了⽅便画图,也有利于增进理解,实际中是什么值都可以,只要⼤⼩关系符合搜索树的性质即可。

2.3.2 右单旋

  1. 本图1展示的是10为根的树,有a/b/c抽象为三棵⾼度为h的⼦树(h>=0),a/b/c均符合AVL树的要求。10可能是整棵树的根,也可能是⼀个整棵树中局部的⼦树的根。这⾥a/b/c是⾼度为h的⼦树,是⼀种概括抽象表示,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体图2/图3/图4/图5进⾏了详细描述。
  2. 在a⼦树中插⼊⼀个新结点,导致a⼦树的⾼度从h变成h+1,不断向上更新平衡因⼦,导致10的平衡因⼦从-1变成-2,10为根的树左右⾼度差超过1,违反平衡规则。10为根的树左边太⾼了,需要往右边旋转,控制两棵树的平衡。
  3. 旋转核⼼步骤,因为5<b⼦树的值<10,将b变成10的左⼦树,10变成5的右⼦树,5变成这棵树新的根,符合搜索树的规则,控制了平衡,同时这棵的⾼度恢复到了插⼊之前的h+2,符合旋转原则。如果插⼊之前10整棵树的⼀个局部⼦树,旋转后不会再影响上⼀层,插⼊结束了。

在这里插入图片描述

2.3.3 右单旋代码实现

void RotateR(Node* parent)
{
	// 可以看把代码和图一结合起来看
	Node* subL = parent->_left;
	Node* subLR = subL->_right;

	// 需要注意除了要修改孩子指针指向,还要修改父亲
	parent->_left = subLR;
	if (subLR) // 如果subLR为空子树就不用更新
		subLR->_parent = parent;

	// 记录parent的父节点
	Node* ppnode = parent->_parent;

	subL->_right = parent;
	parent->_parent = subL;

	// parent是根节点
	if (parent == _root)
	{
		_root = subL;
		subL->_parent = nullptr;
	}
	// parent只是一个子树的根
	else
	{
		// 判断parent是ppnode的左子树还是右子树
		// 并更新subL和ppnode的关系
		if (ppnode->_left == parent)
		{
			ppnode->_left = subL;
		}
		else
		{
			ppnode->_right = subL;
		}
		subL->_parent = ppnode;
	}
	
	// 更新平衡因子
	// 通过图1/2/3/4/5可得规律,更新后subL和parent的平衡因子都为0
	subL->_bf = parent->_bf = 0;
}

2.3.4 左单旋

  1. 本图6展示的是10为根的树,有a/b/c抽象为三棵⾼度为h的⼦树(h>=0),a/b/c均符合AVL树的要求。10可能是整棵树的根,也可能是⼀个整棵树中局部的⼦树的根。这⾥a/b/c是⾼度为h的⼦树,是⼀种概括抽象表⽰,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体跟上⾯左旋类似。
  2. 在a⼦树中插⼊⼀个新结点,导致a⼦树的⾼度从h变成h+1,不断向上更新平衡因⼦,导致10的平衡因⼦从1变成2,10为根的树左右⾼度差超过1,违反平衡规则。10为根的树右边太⾼了,需要往左边旋转,控制两棵树的平衡。
  3. 旋转核⼼步骤,因为10<b⼦树的值<15,将b变成10的右⼦树,10变成15的左⼦树,15变成这棵树新的根,符合搜索树的规则,控制了平衡,同时这棵的⾼度恢复到了插⼊之前的h+2,符合旋转原则。如果插⼊之前10整棵树的⼀个局部⼦树,旋转后不会再影响上⼀层,插⼊结束了。
    在这里插入图片描述

2.3.5 左单旋代码实现

// 左单旋跟右单旋的思想相似,可以对照着右单旋去理解左单旋
void RotateL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;

	parent->_right = subRL;
	if (subRL)
		subRL->_parent = parent;

	Node* ppnode = parent->_parent;

	subR->_left = parent;
	parent->_parent = subR;

	if (parent == _root)
	{
		_root = subR;
		subR->_parent = nullptr;
	}
	else
	{
		if (ppnode->_left == parent)
		{
			ppnode->_left = subR;
		}
		else
		{
			ppnode->_right = subR;
		}
		subR->_parent = ppnode;
	}

	parent->_bf = subR->_bf = 0;
}

2.3.6 左右双旋

通过图7和图8可以看到,左边⾼时,如果插⼊位置不是在a⼦树,⽽是插⼊在b⼦树,b⼦树⾼度从h变成h+1,引发旋转,右单旋⽆法解决问题,右单旋后,我们的树依旧不平衡。右单旋解决的是纯粹的左边⾼,但是插⼊在b⼦树中,10为跟的⼦树不再是单纯的左边⾼,对于10是左边⾼,但是对于5是右边⾼,需要⽤两次旋转才能解决,以5为旋转点进⾏⼀个左单旋,以10为旋转点进⾏⼀个右单旋,这棵树这棵树就平衡了。

在这里插入图片描述

图7和图8分别为左右双旋中h=0和h=1具体场景分析,下⾯我们将a/b/c⼦树抽象为⾼度h的AVL⼦树进⾏分析,另外我们需要把b⼦树的细节进⼀步展开为8和左右⼦树⾼度为h-1的e和f⼦树,因为我们要对b的⽗亲5为旋转点进⾏左单旋,左单旋需要动b树中的左⼦树。b⼦树中新增结点的位置不同,平衡因⼦更新的细节也不同,通过观察8的平衡因⼦不同,这⾥我们要分三个场景讨论。

  1. 场景1:h>=1时,新增结点插⼊在e⼦树,e⼦树⾼度从h-1并为h并不断更新8->5->10平衡因⼦,引发旋转,其中8的平衡因⼦为-1,旋转后8和5平衡因⼦为0,10平衡因⼦为1。
  2. 场景2:h>=1时,新增结点插⼊在f⼦树,f⼦树⾼度从h-1变为h并不断更新8->5->10平衡因⼦,引发旋转,其中8的平衡因⼦为1,旋转后8和10平衡因⼦为0,5平衡因⼦为-1。
  3. 场景3:h==0时,a/b/c都是空树,b⾃⼰就是⼀个新增结点,不断更新5->10平衡因⼦,引发旋转,其中8的平衡因⼦为0,旋转后8和10和5平衡因⼦均为0。

在这里插入图片描述

2.3.7 左右双旋代码实现

void RotateLR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	// 一定要在调用左旋和右旋之前记录subRL的bf值
	// 因为左旋和右旋会把subRL的bf值改掉
	int bf = subLR->_bf;

	RotateL(parent->_left);
	RotateR(parent);

	if (bf == -1) // 情况一
	{
		subL->_bf = 0;
		parent->_bf = 1;
		subLR->_bf = 0;
	}
	else if (bf == 1) // 情况二
	{
		subL->_bf = -1;
		parent->_bf = 0;
		subLR->_bf = 0;
	}
	else if (bf == 0) // 情况三
	{
		subL->_bf = 0;
		parent->_bf = 0;
		subLR->_bf = 0;
	}
	else // 防止代码有误或者有没有考虑到的情况
	{
		assert(false);
	}
}

2.3.8 右左双旋

跟左右双旋类似,下⾯我们将a/b/c⼦树抽象为⾼度h的AVL⼦树进⾏分析,另外我们需要把b⼦树的细节进⼀步展开为12和左右⼦树⾼度为h-1的e和f⼦树,因为我们要对b的⽗亲15为旋转点进⾏右单旋,右单旋需要动b树中的右⼦树。b⼦树中新增结点的位置不同,平衡因⼦更新的细节也不同,通过观察12的平衡因⼦不同,这⾥我们要分三个场景讨论。

  1. 场景1:h>=1时,新增结点插⼊在e⼦树,e⼦树⾼度从h-1变为h并不断更新12->15->10平衡因⼦,引发旋转,其中12的平衡因⼦为-1,旋转后10和12平衡因⼦为0,15平衡因⼦为1。
  2. 场景2:h>=1时,新增结点插⼊在f⼦树,f⼦树⾼度从h-1变为h并不断更新12->15->10平衡因⼦,引发旋转,其中12的平衡因⼦为1,旋转后15和12平衡因⼦为0,10平衡因⼦为-1。
  3. 场景3:h==0时,a/b/c都是空树,b⾃⼰就是⼀个新增结点,不断更新15->10平衡因⼦,引发旋转,其中12的平衡因⼦为0,旋转后10和12和15平衡因⼦均为0。

在这里插入图片描述

2.3.9 右左双旋代码实现

void RotateRL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	// 一定要在调用右旋和左旋之前记录subRL的bf值
	// 因为右旋和左旋会把subRL的bf值改掉
	int bf = subRL->_bf;

	RotateR(parent->_right);
	RotateL(parent);

	if (bf == -1) 
	{
		parent->_bf = 0;
		subRL->_bf = 0;
		subR->_bf = 1;
	}
	else if (bf == 1)
	{
		parent->_bf = -1;
		subRL->_bf = 0;
		subR->_bf = 0;
	}
	else if (bf == 0)
	{
		parent->_bf = 0;
		subRL->_bf = 0;
		subR->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

2.4 插入的完整代码

bool Insert(const pair<K, V>& kv)
{
	if (_root == nullptr)
	{
		_root = new Node(kv);
		return true;
	}

	Node* cur = _root;
	Node* parent = nullptr;
	while (cur)
	{
		if (cur->_kv.first < kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->_kv.first > kv.first)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			return false;
		}
	}

	cur = new Node(kv);
	if (parent->_kv.first < kv.first)
	{
		parent->_right = cur;
	}
	else
	{
		parent->_left = cur;
	}
	cur->_parent = parent;

	// 更新平衡因子
	while (parent)
	{
		if (cur == parent->_right)
		{
			parent->_bf++;
		}
		else if(cur == parent->_left)
		{
			parent->_bf--;
		}
		
		if (parent->_bf == 0)
		{
			// 更新停止
			break;
		}
		else if (parent->_bf == 1 || parent->_bf == -1)
		{
			// 继续向上更新
			cur = parent;
			parent = parent->_parent;
		}
		else if (parent->_bf == 2 || parent->_bf == -2)
		{
			// 不平衡了,旋转处理
			// 单旋就是纯粹的左边高或者右边高
			// 双旋就是不是纯粹的一边高,比如:右子树高,右子树里面又是左子树高
			
			// 左边高
			if (parent->_bf == -2 && cur->_bf == -1) // 右单旋
			{
				RotateR(parent);
			}
			// 右边高
			else if (parent->_bf == 2 && cur->_bf == 1) // 左单旋
			{
				RotateL(parent);
			}
			// 对于parent左边高,对于cur右边高
			else if (parent->_bf == -2 && cur->_bf == 1) // 左右双旋
			{
				RotateLR(parent);
			}
			// 对于parent右边高,对于cur左边高
			else if (parent->_bf == 2 && cur->_bf == -1) // 右左双旋
			{
				RotateRL(parent);
			}
			break;
		}
		else
		{
			assert(false);
		}
	}

	return true;
}

2.5 AVL树的查找

Node* Find(const K& key)
{
	Node* cur = _root;
	while (cur)
	{
		if (cur->_kv.first < key)
		{
			cur = cur->_right;
		}
		else if(cur->_kv.first > key)
		{
			cur = cur->_left;
		}
		else
		{
			return cur;
		}
	}

	return nullptr;
}

2.6 AVL树的平衡检测

#include <iostream>

using namespace std;

#include "AVLTree.h"

// 测试代码
void TestAVLTree1()
{
    AVLTree<int, int> t;
    // 常规的测试用例
    //int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
    // 特殊的带有双旋场景的测试用例
    int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
    for (auto e : a)
    {
        /* if (e == 14)
         {
             int x = 0;
         }*/
        t.Insert({ e, e });
        /*cout << "Insert" << e << "->";
        cout << t.IsBalanceTree() << endl;*/
    }

    t.InOrder();
    cout << t.IsBalanceTree() << endl;
}

#include<vector>

// 插入一堆随机值,测试平衡,顺便测试一下高度和性能等
void TestAVLTree2()
{
    const int N = 1000000;
    vector<int> v;
    v.reserve(N);
    srand(time(0));

    for (size_t i = 0; i < N; i++)
    {
        v.push_back(rand() + i);
    }

    size_t begin2 = clock();
    AVLTree<int, int> t;
    for (auto e : v)
    {
        t.Insert(make_pair(e, e));
    }
    size_t end2 = clock();

    cout << "Insert:" << end2 - begin2 << endl;
    cout << t.IsBalanceTree() << endl;

    cout << "Height:" << t.Height() << endl;
    cout << "Size:" << t.Size() << endl;

    size_t begin1 = clock();
    // 确定在的值
    for (auto e : v)
    {
        t.Find(e);
    }

    // 随机值
    for (size_t i = 0; i < N; i++)
    {
        t.Find((rand() + i));
    }

    size_t end1 = clock();

    cout << "Find:" << end1 - begin1 << endl;
}

int main()
{
    TestAVLTree1();
    cout << endl;
    TestAVLTree2();

    return 0;
}

在这里插入图片描述

3 AVL树的实现代码

3.1 AVLTree.h

#pragma once
#include <cassert>

// AVL树的节点
template<class K, class V>
struct AVLTreeNode
{
	pair<K, V> _kv;
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	int _bf; // balance factor

	AVLTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		,_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_bf(0)
	{}
};

// AVL树
template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}

		Node* cur = _root;
		Node* parent = nullptr;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

		// 更新平衡因子
		while (parent)
		{
			if (cur == parent->_right)
			{
				parent->_bf++;
			}
			else if(cur == parent->_left)
			{
				parent->_bf--;
			}
			
			if (parent->_bf == 0)
			{
				// 更新停止
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				// 继续向上更新
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				// 不平衡了,旋转处理
				// 单旋就是纯粹的左边高或者右边高
				// 双旋就是不是纯粹的一边高,比如:右子树高,右子树里面又是左子树高
				if (parent->_bf == -2 && cur->_bf == -1) // 右单旋
				{
					RotateR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == 1) // 左单旋
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1) // 左右双旋
				{
					RotateLR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1) // 右左双旋
				{
					RotateRL(parent);
				}
				break;
			}
			else
			{
				assert(false);
			}
		}

		return true;
	}

	Node* Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < key)
			{
				cur = cur->_right;
			}
			else if(cur->_kv.first > key)
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}

		return nullptr;
	}

	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

	bool IsBalanceTree()
	{
		return  _IsBalanceTree(_root);
	}

	int Height()
	{
		return _Height(_root);
	}

	int Size()
	{
		return _Size(_root);
	}

private:

	int _Size(Node* root)
	{
		return root == nullptr ? 0 :
			_Size(root->_left) + _Size(root->_right) + 1;
	}

	int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);

		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}

	bool _IsBalanceTree(Node* root)
	{
		// 空树也是AVL树
		if (nullptr == root)
			return true;

		// 计算pRoot结点的平衡因子:即pRoot左右子树的高度差
		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);
		int diff = rightHeight - leftHeight;

		// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
		// pRoot平衡因子的绝对值超过1,则一定不是AVL树
		if (abs(diff) >= 2)
		{
			cout << root->_kv.first << "高度差异常" << endl;
			return false;
		}

		if (root->_bf != diff)
		{
			cout << root->_kv.first << "平衡因子异常" << endl;
			return false;
		}

		// pRoot的左和右如果都是AVL树,则该树一定是AVL树
		return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
	}

	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_InOrder(root->_left);
		cout << root->_kv.first << " ";
		_InOrder(root->_right);
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		// 需要注意除了要修改孩子指针指向,还要修改父亲
		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* ppnode = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (ppnode->_left == parent)
			{
				ppnode->_left = subL;
			}
			else
			{
				ppnode->_right = subL;
			}
			subL->_parent = ppnode;
		}

		subL->_bf = parent->_bf = 0;
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		Node* ppnode = parent->_parent;

		subR->_left = parent;
		parent->_parent = subR;

		if (parent == _root)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (ppnode->_left == parent)
			{
				ppnode->_left = subR;
			}
			else
			{
				ppnode->_right = subR;
			}
			subR->_parent = ppnode;
		}

		parent->_bf = subR->_bf = 0;
	}

	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		// 一定要在调用左旋和右旋之前记录subRL的bf值
		// 因为左旋和右旋会把subRL的bf值改掉
		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);

		if (bf == -1)
		{
			subL->_bf = 0;
			parent->_bf = 1;
			subLR->_bf = 0;
		}
		else if (bf == 1)
		{
			subL->_bf = -1;
			parent->_bf = 0;
			subLR->_bf = 0;
		}
		else if (bf == 0)
		{
			subL->_bf = 0;
			parent->_bf = 0;
			subLR->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		// 一定要在调用右旋和左旋之前记录subRL的bf值
		// 因为右旋和左旋会把subRL的bf值改掉
		int bf = subRL->_bf;

		RotateR(parent->_right);
		RotateL(parent);

		if (bf == -1)
		{
			parent->_bf = 0;
			subRL->_bf = 0;
			subR->_bf = 1;
		}
		else if (bf == 1)
		{
			parent->_bf = -1;
			subRL->_bf = 0;
			subR->_bf = 0;
		}
		else if (bf == 0)
		{
			parent->_bf = 0;
			subRL->_bf = 0;
			subR->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}
private:
	Node* _root = nullptr;
};

3.2 test.cpp

#include <iostream>

using namespace std;

#include "AVLTree.h"

// 测试代码
void TestAVLTree1()
{
    AVLTree<int, int> t;
    // 常规的测试用例
    //int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
    // 特殊的带有双旋场景的测试用例
    int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
    for (auto e : a)
    {
        /* if (e == 14)
         {
             int x = 0;
         }*/
        t.Insert({ e, e });
        /*cout << "Insert" << e << "->";
        cout << t.IsBalanceTree() << endl;*/
    }

    t.InOrder();
    cout << t.IsBalanceTree() << endl;
}

#include<vector>

// 插入一堆随机值,测试平衡,顺便测试一下高度和性能等
void TestAVLTree2()
{
    const int N = 1000000;
    vector<int> v;
    v.reserve(N);
    srand(time(0));

    for (size_t i = 0; i < N; i++)
    {
        v.push_back(rand() + i);
    }

    size_t begin2 = clock();
    AVLTree<int, int> t;
    for (auto e : v)
    {
        t.Insert(make_pair(e, e));
    }
    size_t end2 = clock();

    cout << "Insert:" << end2 - begin2 << endl;
    cout << t.IsBalanceTree() << endl;

    cout << "Height:" << t.Height() << endl;
    cout << "Size:" << t.Size() << endl;

    size_t begin1 = clock();
    // 确定在的值
    for (auto e : v)
    {
        t.Find(e);
    }

    // 随机值
    for (size_t i = 0; i < N; i++)
    {
        t.Find((rand() + i));
    }

    size_t end1 = clock();

    cout << "Find:" << end1 - begin1 << endl;
}

int main()
{
    TestAVLTree1();
    cout << endl;
    TestAVLTree2();

    return 0;
}

4 AVL树的相关习题

  1. 现有一棵无重复关键字的平衡二叉树(AVL树),对其进行中序遍历可得到一个降序序列。下列关于该平衡二叉树的叙述中,正确的是()
    A.根结点的度一定为2
    B.树中最小元素一定是叶结点
    C.最后插入的元素一定是叶结点
    D.树中最大元素一定是无左子树

  2. 关于AVL树的旋转说法正确的是()
    A.插入时,AVL树最多只需要旋转两次
    B.删除时,只要某个节点的平衡因子不满足特性时 ,只需要对该棵子树进行旋转,就可以使AVL树再次平衡
    C.AVL树的节点中必须维护平衡因子,因为要依靠其平衡因子是否需要旋转以维护其平衡性
    D.AVL树的双旋转只需要直接使用对应的单旋转即可

答案解析:

对于第一题:
题目中说:中序遍历得到一个降序序列,则说明:根小于左子树中节点,大于右子树中节点

A:错误,根可以没有左子树,比如树中只有两个节点,即根以及根的右子树

B:错误,树中最小的元素一定是最左侧或者最右侧节点,但不一定是叶子节点

C:错误,最后插入的元素不一定是叶子节点,因为新节点插入后,为了保证其平衡性,还要对树进行旋转处理,旋转之后,就不一定在叶子的位置

D:正确,因为最大元素如果存在左子树,中序遍历就不可能是降序序列

因此:选择D

对于第二题:
A:正确,即双旋

B:错误,可能需要旋转多次,子树旋转后,其高度降低了一层,其上层可能也需要跟着旋转

C:错误,平衡因子不是必须要维护的,在操作时也可以直接通过高度函数来算,只不过比较麻烦

D:错误,不能直接使用单旋转,因为两个单旋转完成后,还需要对部分节点的平衡因子进行更新

因此,选择A

评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值