2025 年第十五届 Mathorcup 数学应用挑战赛 C 题:音频文件的高质量读写与去噪优化完整成品思路 代码 结果 模型 分享

随着数字媒体技术的迅速发展,音频处理已成为信息时代的关键技术之一。在日常生活中,从录音设备捕捉的原始音频到最终呈现给听众的声音,需要经过一系列复杂的处理步骤。这一过程面临三大核心挑战:高效存储、降噪处理和音色优化。
首先,音频数据通常体积庞大,需要在保证质量的前提下进行高效存储和传输。不同的音频格式(如WAV、MP3、FLAC等)采用不同的编码算法,在文件大小与音质之问形成了复杂的权衡关系。采样率、比特深度和压缩算法等参数的选择直接影响存储效率和音频质量然而,针对不同类型的音频内容(语音、音乐、环境声等),最佳参数组合往往各不相同。
其次,在实际应用中,音频往往受到各种环境噪声的污染。从室内的空调声、电脑风扇声,到室外的交通噪声、风噪声,再到录音设备本身产生的电流噪声等,这些千扰会显著降低音频的清晰度和可辨识度。不同类型的噪声具有不同的时频特性,需要针对性地设计去噪算法才能有效处理。
附件1提供了不同音频格式及其参数设置的详细信息,包括各种编码方式的技术规格和存储效率数据:附件2包含了在多种环境下录制的带噪声音频样本,涵盖了从轻微背景噪声到强烈千扰的各种情况。

基于这些数据,需要运用数学建模方法解决音频存储优化、噪声去除问题,以提升整体音频质量。
问题1:设计一个综合评价指标,量化不同音频格式(至少包含WAV、MP3、AAC这3种音频格式)在存储效率与音质保真度之问的平衡关系。该指标应考虑:
文件大小(存储空问占用)
音质损失(与原始音频相比的信息丢失)
编解码复杂度(计算资源消耗)
适用场景(如流媒体传输、专业录音等)

1. 符号说明与评价指标候选

设三种格式集合 F={WAV,MP3,AAC}

对于任意格式 f∈F,定义以下四类原始量(可通过附件1、2中的实测数据获得):

文件大小Sf(单位:MB)

音质损失Lf,以原始无损音频为基准,采用客观评价指标(如 PESQ、PEAQ)计算的归一化损失值

编解码复杂度Cf​,可用算法运行时间或浮点运算量(FLOPs)度量

场景适配度 向量 Uf=[Uf(1),Uf(2),…,Uf(K)],其中第k类场景(如流媒体传输、专业录音、移动终端)下的适用评分 Uf(k)∈[0,1]

2. 指标归一化

由于各量纲差异,需要先归一化。令

其中:

η1(f)表示相对于最优格式的存储效率(越大越好);

η2(f)表示音质保真度评分(越大越好);

η3(f)表示相对计算效率(越大越好);

η4(k)(f)表示在第k场景的适用度。

3. 综合评价模型

针对格式f,定义其在第k场景下的综合评价值Ef(k)​:

其中权重向量

需满足:

公式 (1) 即为在第k场景下,对存储效率、音质保真度、编解码复杂度及场景适配性四方面的加权总评分。

4. 权重确定

4.1 主观赋权法(AHP)

构建判断矩阵

其中:

求解最大特征值对应的特征向量,再归一化得到w(k)。

4.2 客观赋权法(熵权法)

计算第i指标在所有格式上的归一化矩阵P(i),

计算熵值

计算权重

5. 多场景下的决策

若需要综合所有K个场景的总体评价,可定义全局评分:

其中αk为各场景重要性权重,可根据实际应用需求再做 AHP 或主观分配。

6.求解结果分析

本文基于表中各格式在文件大小、音质保真度、解码复杂度及场景适配性四个维度计算出的归一化指标和综合评分,对 WAV、MP3 和 AAC 三种常见音频格式在流媒体和专业录音两类典型场景下的性能进行了比较与分析:

格式

size_mb

loss_stoi

complexity_s

streaming

recording

eta1_size

eta2_quality

eta3_complexity

WAV

0.4787

0.7704

0.0128

0.6

0.95

0.2266

0.2296

1.0000

MP3

0.1495

0.8768

0.1353

0.9

0.70

0.7256

0.1232

0.0947

AAC

0.1085

0.8486

0.1246

0.9

0.70

1.0000

0.1514

0.1028

格式

streaming

recording

global

WAV

0.5141

0.6016

0.5578

MP3

0.4609

0.4109

0.4359

AAC

0.5385

0.4885

0.5135

首先,文件大小(size_mb)反映了存储与传输效率。从原始数据看,WAV 格式平均占用 0.4787 MB,远高于 MP3(0.1495 MB)和 AAC(0.1085 MB)。因此,WAV 的归一化存储效率 eta1_size=0.2266,远低于 MP3(0.7256)和 AAC(1.0000)。在存储和带宽资源受限的场景(如在线流媒体)中,AAC 可提供最优的空间利用。

问题 2:基于附件1中的音频文件,建立数学模型,分析采样率、比特深度、压缩算法等参数对音频质量和文件大小的影响。设计音频文件的性价比指标(音质与文件大小的平衡),并据此对附件1中的不同参数组合得到的文件进行排序(分音乐和语音,不包括原始音乐文件和原始语音文件),分别给出针对语音内容和音乐内容的最佳参数推荐。

1. 符号说明

令r为采样率(Hz);

b为量化比特深度(bits);

T为音频时长(秒),对所有样本可视作常数;

对压缩算法,令 RRR 为编码比特率(kbps),ρ为压缩比,定义为原始 PCM 大小与压缩后文件大小之比;

Q为音频客观质量指标(例如 STOI、PESQ、MUSHRA 等归一化评分);

S为文件大小(MB)。

进一步定义归一化函数

其中rmin​,rmax分别取附件1中的最小与最大采样率;bmin​,bmax​ 分别取最小与最大比特深度。

2. 文件大小模型

PCM 原始音频大小:

压缩后文件大小:

在实际编码中,ρ又可由比特率R计算:

其中 R以 kbps 计。公式 (2) 与 (3) 二者等价,取决于ρ 或R的选用。

3. 音质质量模型

音质质量 Q受三方面影响:采样率r、比特深度 b和压缩失真。我们构建加权模型:

其中

fr(r)描述采样率对频谱重现的贡献,可取

fb(b)描述量化位深对动态范围的贡献,可取

fc(R)描述压缩失真随比特率增长的减小,亦可取对数或经验模型,如

因此 [1−fc(R)]即为失真量化值。权重 wr+wb+wc=1,可通过 AHP 或专家打分法确定,并可针对语音和音乐内容分别赋予不同权重。

4. 性价比指标设计

要在音质 Q 与文件大小 S之间取得平衡,定义性价比(Cost–Benefit)指标:

其中 γ>0 控制对文件大小敏感度。常取 γ=1简化为

为方便跨样本对比,可再将 CB归一化:

5. 分类排序与最优推荐

当附件1中给出N种参数组合 {(ri,bi,Ri)}i=1,则可为每种组合计算

按 CB~i从大到小排序,即可得到整体性价比排名。

由于语音信号与音乐信号在频谱特性、动态范围等方面差异较大,应分别选定权重向量

并分别对语音类和音乐类样本计算对应的 CB~is和 CB~im,从而给出:

语音最佳参数

音乐最佳参数

其中 Ispeech和 Imusic分别标识语音、音乐样本索引集合。

6.结果分析

在对附件 1 中各参数组合进行性价比(CB)排序之后,我们发现在语音内容的评估中,采样率和比特率的权衡尤为重要。

Index

file content

r

b

R

S

loss

Q

CB

rank

0

语音_16000Hz_16bit.wav

speech

16000

16

256.059

0.1822

0.9923

0.4076

2.2378

42.0

1

语音_16000Hz_8bit.wav

speech

16000

8

128.059

0.0911

0.9338

0.4268

4.6845

39.0

2

语音_22050Hz_16bit.wav

speech

22050

16

352.859

0.2510

0.9635

0.4395

1.7509

44.0

3

语音_32000Hz_16bit.wav

speech

32000

16

512.059

0.3643

0.9736

0.4766

1.3082

45.0

4

语音_44100Hz_16bit.wav

speech

44100

16

705.659

0.5020

0.9262

0.5084

1.0128

46.0

...

...

...

...

...

...

...

...

...

...

...

78

语音_44100Hz_AAC_192kbps.aac

speech

44100

16

74.9912

0.0533

0.9260

0.7860

14.7340

4.0

79

语音_44100Hz_AAC_96kbps.aac

speech

44100

16

45.5532

0.0324

0.9241

0.8477

26.1604

1.0

80

音乐_44100Hz_AAC_128kbps.aac

music

44100

16

133.6765

0.1595

0.7727

0.5858

3.6734

13.0

81

音乐_44100Hz_AAC_192kbps.aac

music

44100

16

152.4275

0.1818

0.7715

0.5777

3.1768

14.0

82

音乐_44100Hz_AAC_256kbps.aac

music

44100

16

152.5442

0.1820

0.7717

0.5777

3.1741

15.0

排名第一的参数组合是“44.1 kHz + AAC@96 kbps”。这一配置下,STOI 客观评分约为 0.8477,而文件大小仅约 45 kB,使得 CB 值高达 26.16,远超其他组合。可以看出,44.1 kHz 的高采样率保证了语音的高频信息得以完整保存,而 AAC 编码在 96 kbps 速率下能够以极低的码率维持较好的语音可懂度。与之相比,其他如 22.05 kHz 或较高比特率的组合,虽然在质量上稍有提升,但由于文件大小显著增加,CB 值反而不及这一“高采样率低码率”的自洽方案。

.

问题 3:设计一种自适应编码方案,能够分析输入音频的特征(区分语音/音乐类型、识别频谱特点和动态范围),并据此自动选择最佳编码参数。将你的方案应用于附件1中提供的原始音乐和原始语音音频样本,记录优化后的参数选择、文件大小和音质保真度,并与定参数方案相比较,说明你的方案带来的改进。


问题 4:基于附件2中的音频文件,对样本音频进行时频分析,建立数学模型识别并量化各类噪声(如背景噪声、突发噪声、带状噪声等)的特征参数。提出一种改进的去噪策略或自适应算法,能针对不同噪声类型自动选择最佳处理方法。处理样本音频,要求在论文中给出每个音频包含的噪声种类,去噪后的音频文件的信噪比,并分析在不同噪声类型和强度下的适用范围与局限性。
同时将去噪后的音频存储为新的wav 文件,并分别命名为partl denoised.wav 和 part2 _denoised.wav 进行提交。

完整获取👇👇👇👇👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值