编辑 | 萝卜皮
粒子加速器的自主调节是一个活跃且具有挑战性的研究领域,其目标是实现先进的加速器技术和尖端的高影响力应用,例如物理发现、癌症研究和材料科学。但是,自主加速器调节仍然严重依赖经验丰富的熟练操作员的手动操作。
德国亥姆霍兹协会旗下 DESY(Deutsches Elektronen Synchrotron)的研究人员建议使用大型语言模型(LLM)来调整粒子加速器。
该团队通过一个原理验证示例展示了 LLM 仅根据操作员的自然语言提示来调整加速器子系统的能力,并将其性能与当前最先进的优化算法,如贝叶斯优化(BO)和强化学习训练优化(RLO),进行了比较。
LLM 可以对非线性现实目标进行数值优化,未来有望帮助加速将自主调谐算法部署到日常粒子加速器操作中。
该研究以「 Large language models for human-machine collaborative particle accelerator tuning through natural language」为题,于 2025 年 1 月 1 日发布在《 Science Advances》。