随着语音技术在各领域应用的迅速扩展,全球语言与口音的多样性成为技术进一步突破的重大挑战。为了应对这一难题,来自卡内基梅隆大学(CMU)、斯坦福大学(Stanford University)、乔治梅森大学(George Mason University)、台湾大学与芝加哥丰田技术学院(TTIC)的研究团队连手,在即将举行的 INTERSPEECH 2025 国际会议上推出了 ML-SUPERB 2.0 挑战赛(Multilingual SUPERB 2.0 Challenge)。该挑战旨在推动多语言语音技术迈向新高度,为语音科技的全球化应用奠定坚实基础。
语 言 数 量 规 模
ML-SUPERB 2.0 提供了包含大量不同语言的语音数据集。
●训练集:涵盖 141 种语言的丰富语音数据,从主流语言到稀有方言,为参赛者提供多元化的语言资源以训练模型。
●开发集:包含训练集中的141种语言,和另外的56 种方言与口音,为模型性能的全面评估提供支持。
这些数据反映了全球语言的多样性,确保技术不仅服务于主流语言,更覆盖小众语言。
新型 评 估机制
ML-SUPERB 2.0 在评估机制上进行了创新