1.Conda 环境创建和软件安装
下载代码
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
完成下载后进行安装
bash Miniconda3-latest-Linux-x86_64.sh
安装后进行初始化
conda init
然后关必界面重新打开验证是否安装成功
conda --version
如图表示安装成功
2 创建 Conda 环境
激活 Conda:conda
激活成功
创建名为 dnbc4tools 的新环境,并指定使用 Python 3.8 和 Perl:conda create -n dnbc4tools python=3.8 perl
conda create -n dnbc4tools python=3.8 perl
激活新创建的环境:conda activate dnbc4tools
创建成功
1.2 安装 dnbc4tools
使用 Conda 安装 htslib 和 samtools(版本均为 1.18),并从 bioconda 和 conda-forge 通道安装。
注意先添加通道
conda config --add channels bioconda
conda config --add channels conda-forge
进行安装
conda install htslib=1.18 samtools=1.18
htslib=1.18没找到,可以通过conda list进行查找,因为hts是一个库可能不能直接查到。
安装成功
使用 pip 安装 dnbc4tools(版本为 2.1.2)。
pip install dnbc4tools==2.1.2
有时候会在这种情况下卡住,我们选择从官网下载dnbc4tools然后本地导入
下载完成后
cd /mnt/c/2345Downloads/导航到文件所在目录
tar -xzvf DNBC4tools-2.1.2.tar.gz 解压一下
安装依赖包,在官网上可以查到
polars-lts-cpu==0.20.2
scanpy[leiden]==1.9.8
pyranges
pyahocorasick==2.0.0
pysam
datatable==0.11.1
tarjan
pyarrow
scrublet
macs2==2.2.9.1
scikit-misc
plotly
然后安装python setup.py install(这是一种手动安装方式,因此需要自己找依赖包)
安装好之后查看
pip show dnbc4tools
这样我们在pip中查询到了就是安装好了
注意事项
最重要的一点
下载依赖包全程挂梯子!
下载依赖包全程挂梯子!
下载依赖包全程挂梯子!
重要的事情说三遍!
如果 annoy 包安装失败,可以尝试使用 conda install conda-forge::python-annoy 命令安装。
可以使用 YAML 文件来创建环境,通过以下命令下载 YAML 文件并创建环境:
bash
wget https://raw.githubusercontent.com/MGI-tech-bioinformatics/DNBelab_C_Series_HT_scRNA-analysis-software/version2.0/dnbc4tools.yaml
conda env create -f dnbc4tools.yaml -n dnbc4tools
2. 容器技术
Singularity
使用 Singularity 构建名为 dnbc4tools.sif 的 Singularity 容器,基于 Docker 镜像 dnbelabc4/dnbc4tools。
Docker
从 Docker Hub 拉取名为 dnbelabc4/dnbc4tools 的 Docker 镜像。
分析
Conda 环境:用于创建一个隔离的环境,其中包含特定版本的软件和依赖,确保软件的兼容性和可重复性。
软件安装:通过 Conda 和 pip 安装特定的生物信息学工具,如 dnbc4tools,htslib 和 samtools。
容器技术:
Singularity:允许在没有 Docker 守护进程的情况下运行 Docker 容器,适用于高性能计算环境。
Docker:一种广泛使用的容器技术,用于打包、分发和运行应用程序。
这些步骤和工具的选择表明,这是一个为生物信息学分析设置的工作环境,旨在确保软件的兼容性和可移植性。