落晓549
码龄1年
关注
提问 私信
  • 博客:1,797
    1,797
    总访问量
  • 3
    原创
  • 206,560
    排名
  • 13
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:云南省
  • 加入CSDN时间: 2024-09-05
博客简介:

2403_87149462的博客

查看详细资料
  • 原力等级
    当前等级
    0
    当前总分
    25
    当月
    0
个人成就
  • 获得38次点赞
  • 内容获得0次评论
  • 获得15次收藏
创作历程
  • 3篇
    2024年
成就勋章
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

机器学习的方法

一、模型评估与误差 模型输出偏离真实目标值说明模型存在误差,用损失函数来度量偏离的程度,训练集上的平均误差称为训练误差,测试集上的误差称为泛化误差,泛化误差是衡量模型泛化能力的重要标准。 1、数据集: 数据集包括训练集、验证集和测试集。训练集相当于上课学知识,验证集相当于课后练习题,用来纠正和强化学到的知识,测试集相当于期末考试,用来最终评估学习效果。 对于小规模样本集,常用划分比例为训练集:验证集:测试集 = 6:2:2或训
原创
发布博客 2024.09.17 ·
550 阅读 ·
14 点赞 ·
0 评论 ·
4 收藏

机器学习中的统计学习理论

在机器学习中,数据的丰富性和 质量直接影响统计学习模型的性 能上限。模型假设需符合实际数据分布,如支持向量机假设数据在高维空间可分,数据分布的多样。通过交叉验证技术,如K折交叉验证,可以评估模型假设在不同数据集上的泛化能力,确。监督学习依赖于带有已知标签的数据集进行模型训练,通过比较预测值与真实值调。无监督学习无需标签数据,通过聚类、降维等技术探索数据内在结构和隐藏模式。半监督学习利用有限的标签数据和大量无标签数据共同训练模型,提高学习效率和。通过数据验证假设,可确保模型的有效应用。4.强化学习试错优化。
原创
发布博客 2024.09.08 ·
491 阅读 ·
8 点赞 ·
1 评论 ·
5 收藏

机器学习的算法与流程

机器学习的主要流程是明确分析目标、数据收集、数据预处理、建模分析、结果评估、部署使用以及学习更新。机器学习的流程就是通过分析训练集中的数据,为每个类 别做出准确的描述或建立分析模型或挖掘出分 类规则,然后用这个分类规则对其它数据对象 进行分类。支持向量机,决策树,Bayesian网络.2.聚类算法;聚类就是K-means基于划分的聚类K均值(K-Means)基于密度的聚类3.回归分析;是一种研究自变量和因变量之间关系 的,用于分析当自变量发生变化时, 因变量的变化值。4推荐算法。
原创
发布博客 2024.09.08 ·
756 阅读 ·
16 点赞 ·
0 评论 ·
6 收藏