
机器学习的方法
一、模型评估与误差
模型输出偏离真实目标值说明模型存在误差,用损失函数来度量偏离的程度,训练集上的平均误差称为训练误差,测试集上的误差称为泛化误差,泛化误差是衡量模型泛化能力的重要标准。
1、数据集:
数据集包括训练集、验证集和测试集。训练集相当于上课学知识,验证集相当于课后练习题,用来纠正和强化学到的知识,测试集相当于期末考试,用来最终评估学习效果。
对于小规模样本集,常用划分比例为训练集:验证集:测试集 = 6:2:2或训

新星杯·14天创作挑战营·第9期
这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc
