极大极小算法(Minimax Algorithm)是一种在博弈论中用来找到最优策略的算法,特别是在零和游戏中。这种算法假设两个玩家都以最优策略进行游戏,其中一个玩家(最大化玩家)试图最大化其收益,而另一个玩家(最小化玩家)则试图最小化最大化玩家的收益。
极大极小算法的基本思想是:
- 递归搜索:算法递归地搜索游戏树的所有可能的移动序列。
- 评估函数:对于每个位置,使用评估函数来确定当前位置的“价值”。
- 极大极小决策:
- 对于最大化玩家,算法选择能够使评估函数值最大化的移动。
- 对于最小化玩家,算法选择能够使评估函数值最小化的移动。
算法的步骤大致如下:
- 初始化:从当前游戏状态开始。
- 检查游戏状态:如果游戏已经结束(即达到了游戏树的叶子节点),则根据游戏结果返回一个评估值。
- 极大玩家选择:如果是最大化玩家的回合,算法会评估所有可能的移动,并选择评估值最高的移动。
- 极小玩家选择:如果是最小化玩家的回合,算法会评估所有可能的移动,并选择评估值最低的移动(即最小化最大化玩家的收益)。
- 递归:对于每个选择的移动,算法递归地重复步骤2-4。
- 回溯:一旦到达叶子节点或完成所有递归,算法会回溯并更新父节点的评估值。
- 返回最佳移动:算法返回最大化玩家的最佳移动。
极大极小算法通常与α-β剪枝(Alpha-Beta Pruning)结合使用,以减少搜索空间并提高效率。α-β剪枝是一种优化技术,它利用了极大极小算法的评估顺序来减少需要评估的节点数。
极大极小算法在棋类游戏(如国际象棋、围棋、跳棋)中被广泛使用,也适用于其他需要策略决策的场景。