AI 产品经理需要掌握哪些能力?
1. 什么是 AI 产品经理?
-
普通产品经理需要与工程师、设计师、运营、市场等人合作。
-
AI 产品经理除了以上,还需要与AI 科学家或AI 工程师合作。
-
为什么需要新的知识?为了更好地沟通,AI 产品经理需要了解一些人工智能的基础知识。
2. AI 产品经理不等于 AI 科学家
-
不用担心数学难题:现在有很多工具(如 TensorFlow)让我们不用深度研究复杂的数学算法也能开发 AI 应用。
-
专注于理解和应用:AI 产品经理需要理解 AI 能做什么,不能做什么,然后把客户的需求转化为 AI 可以实现的功能。
3. 传统行业的人有新机会
-
行业经验很宝贵:对某个行业非常熟悉的人,可以帮助 AI 团队开发出真正满足行业需求的产品。
-
转型成为 AI 产品经理:只要学习一些产品经理的基础知识,再加上你的行业经验,就有机会进入 AI 领域。
人工智能的发展历史
1. 早期发展(1950s-1970s)
-
起步:1956 年,"人工智能"这个词被正式提出。
-
初期成果:计算机开始尝试解决数学问题和处理语言。
2. 第一次低谷(1970s-1980s)
-
原因:
-
计算机性能不足,很多程序无法运行。
-
数据量太小,无法支撑 AI 学习。
-
结果:研究停滞,资金减少。
3. 繁荣时期(1980s-1987)
- 专家系统的兴起:如 XCON 系统,帮助公司节省大量成本。
4. 第二次低谷(1987-1993)
-
原因:市场需求下降,技术进展缓慢。
-
结果:投资减少,研究再次停滞。
5. 新的崛起(1993-至今)
-
重大突破:
-
1997 年,IBM 的深蓝击败国际象棋冠军。
-
2016 年,AlphaGo 战胜围棋冠军李世石。
-
技术进步:计算能力增强,算法优化,数据量大增。
如何理解人工智能?
1. 从学习方式看
-
监督学习:有"标准答案"的学习方式。比如告诉机器这是一张猫的照片,再给它看新的图片,让它判断是不是猫。
-
非监督学习:没有标准答案,机器自己找规律。比如给机器一堆图片,它自己分类,但不知道分类的名称。
-
强化学习:通过"奖励和惩罚"机制,让机器学会完成任务。比如机器人学走迷宫,走对了给奖励,走错了受惩罚。
2. 从智能程度看
-
弱人工智能:只在某个特定领域很聪明。比如只会下棋的 AI。
-
强人工智能:拥有像人类一样的全面智能,能处理各种复杂任务(目前还未实现)。
-
超人工智能:智能远超人类的 AI(理论阶段)。
3. 从技术层次看
-
感知层:让机器感知世界,比如语音识别、图像识别。
-
认知层:让机器理解信息,比如自然语言处理。
-
决策层:让机器做决定,比如自动驾驶的路线规划。
-
集成解决方案:把多个 AI 技术组合起来,解决复杂问题。
4. 从应用领域看
-
互联网应用:搜索引擎、推荐系统、反欺诈等。
-
智能交通:自动驾驶、交通管理。
-
智能金融:风险评估、智能投顾。
-
智能医疗:疾病诊断、药物研发。
-
其他领域:农业、翻译、写作、创作艺术等。
[]
学习 AI 的方法和资源
1. 推荐书籍
-
科普类:了解 AI 的基本概念和发展趋势。
-
《人工智能:李开复谈 AI》
-
《智能革命》
-
小说类:开拓思维,了解未来可能性。
-
《三体》
-
《未来简史》
2. 在线课程
-
吴恩达的机器学习课程:深入浅出地讲解机器学习。
-
Coursera、Udacity等平台上的 AI 课程。
3. 关注公众号和网站
- 机器之心、网易智能等,获取最新 AI 动态。
4. 阅读论文
- 了解前沿技术:虽然可能有点难,但可以选择性阅读,了解最新研究方向。
[]
AI 产品经理的核心能力
1. 基础的 AI 知识
-
理解 AI 能做什么:知道哪些问题可以用 AI 解决。
-
了解 AI 的局限性:避免提出不合理的需求。
2. 沟通能力
-
与技术团队沟通:把业务需求转化为技术需求。
-
与客户或用户沟通:理解他们的痛点和需求。
3. 行业知识
- 深入了解所处行业:只有理解行业,才能发现 AI 应用的机会。
[]
总 结
-
不用害怕 AI 很复杂:作为产品经理,你不需要精通算法,只需要理解基本原理。
-
抓住机会:AI 正在改变各个行业,现在是学习和转型的好时机。
-
从基础开始:一步一步学习,先理解概念,再看实际应用。
###如何学习AI大模型 ?
#####“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
[]👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
[]👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
[]👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
[]👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。