自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 验证双随机矩阵(doubly stochastic matrix) 满足C(P)=C(P^T)

验证双随机矩阵(doubly stochastic matrix) 满足C($P$)=C(P^T)

2024-11-15 17:48:26 1105

原创 互信息与信源信道的关系函数

【代码】互信息与信源信道的关系函数。

2024-10-29 21:56:49 628

原创 利用圆周卷积定理实现线性卷积:原理剖析与误差分析

在数字信号处理领域,卷积运算是一个基础且重要的操作。本文将深入探讨如何利用圆周卷积定理来实现线性卷积,并通过实验验证其准确性。我们将详细分析计算过程,并对结果进行误差分析,以深入理解这一重要理论。

2024-10-28 12:30:00 1014

原创 DFT分辨率提升技术分析:从采样点数到频谱特性

在数字信号处理中,离散傅里叶变换(DFT)的频率分辨率是一个重要的技术指标。本文将通过一个具体的案例,深入分析采样点数与DFT分辨率之间的关系,并探讨如何通过增加采样点数来提高频谱分析的精度。

2024-10-28 08:00:00 1327

原创 CZT与FFT频谱分析方法对比:从任意频带重采样到高精度频谱分析

M = 85 % 输出点数f0 = 70 Hz % 起始频率DELF = 0.4 Hz % 频率步长频率分辨率提高到0.4 Hz分析带宽聚焦在[70, 103.6]Hz更清晰地分辨出78Hz和82Hz的频率分量。

2024-10-27 23:48:47 1334

原创 数字系统的零极点特性分析:DFT与CZT方法的对比研究

在数字信号处理领域,系统的频率响应分析是一个核心问题。本文将详细探讨如何使用离散傅里叶变换(DFT)和啮合Z变换(Chirp Z-Transform, CZT)来分析数字系统的零极点特性,并通过MATLAB实现来展示这两种方法的应用。

2024-10-27 23:26:25 1317

原创 ASCII码查询手册

以下是完整的 ASCII 码表,包括所有可打印字符和控制字符:

2024-10-20 23:30:12 582

原创 FIR与IIR数字滤波器

在数字信号处理(DSP)领域,滤波器设计是一个核心话题。两种主要的数字滤波器类型是有限脉冲响应(FIR)滤波器和无限脉冲响应(IIR)滤波器。本文将对这两种滤波器进行比较,探讨它们的特性、优缺点以及适用场景。

2024-10-20 22:37:03 765

原创 matlab分析系统函数

本文深入探讨了系统函数 H(z) = 1 - z^(-4),这个看似简单的表达式背后隐藏着丰富的信号处理智慧。通过MATLAB的强大分析工具,我们揭示了这个梳状滤波器的独特魅力:其频率响应如梳子般周期起伏,在特定频率点上展现出完全衰减和最大增益的极端特性。我们将看到它如何在单位圆上布下四个零点,又如何呈现出近乎完美的线性相位响应。从音频处理到图像增强,再到通信系统,这个简洁的函数找到了自己的一席之地。无论您是初学者还是专家,这篇文章都将为您打开数字信号处理的一扇新窗口,邀您共同领略数学之美与工程之妙。

2024-10-20 22:36:13 1523

原创 信息论与编码:马尔可夫链的收敛性与正则性探究

本文深入探讨了马尔可夫链在信息论和编码领域中的重要性,特别聚焦于其收敛性和正则性。通过两个具体的作业,文章展示了马尔可夫链的数学特性及其在实际应用中的表现。第一个作业通过迭代验证了定理W,证明了在正则马尔可夫链中,转移概率矩阵的幂次趋于稳定状态。第二个作业则探讨了非正则马尔可夫链的反例,包括周期性和可约性两种情况,揭示了这些特殊情况下马尔可夫链的独特行为。通过理论分析和实际计算,本文为读者提供了对马尔可夫链基本性质的深入理解,为进一步研究信息论和编码奠定了基础。

2024-10-17 23:38:17 1287

原创 搭建简单的神经网络

本博客探讨了使用NumPy和PyTorch构建神经网络的不同方法。首先,通过手动实现一个简单的两层神经网络,我们深入理解了前向传播、激活函数和反向传播的基本原理。接着,介绍了PyTorch的Autograd功能,展示了如何简化梯度计算,从而提高训练效率。随后,利用PyTorch的nn模块,我们展示了如何以更高层次的方式构建神经网络,增强了代码的可读性和可管理性。最后,手动实现神经网络的基本功能,帮助学习者掌握底层原理。通过这些示例,读者将获得关于神经网络构建与训练的全面理解,为深入学习深度学习奠定基础。

2024-10-17 23:07:45 1082

原创 ASM代码分享

asm代码分享

2024-10-16 23:54:59 492

原创 RN(n)的DTFT和DFT

DFT的物理意义验证

2024-10-16 23:31:04 1937

原创 doxbox使用

确保已在系统中安装DOSBox。

2024-10-15 10:46:39 452

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除