文献综述:CT图像在脑出血检测中的应用与发展

前言

脑出血是临床常见的急性疾病,及时的进行精准的检测对后面的治疗非常重要。而CT检测是检测脑出血的非常重要的一个标准,现在广泛用于脑出血急性期的检测。但是随着技术的发展,对于脑出血的不同分期(急性期、亚急性期、慢性期)在CT图像上的表现出的差异使得脑出血的早期诊断仍然有些困难。最近随着深度学习的高度发展,深度学习大模型也应用到这一领域。本文对不同的CT图像分析对于脑出血检测的不同的方法进行总结,并着重与传统CT图像分析和深度学习大模型图像分析的差异。

主体

对于传统CT图像分析方法的研究

2009年,Delgado Almandoz等人做了一项研究,对比了多排CT血管造影(MDCTA)和常规CT扫描在检查自发性脑实质出血时谁更准。结果发现,MDCTA能把血管结构的情况展示得更清楚,在判断脑出血是从哪儿来的,还有出血部位和周围血管啥关系这些方面,很有一手。要是碰到范围比较大的脑出血,或者得看看有没有血管破裂、有没有动脉瘤,用MDCTA就挺合适,它判断得挺准呢。

非增强CT在脑出血扩张预测中的作用 Morotti等人的研究进一步证实了非增强CT在脑出血扩张预测中的核心价值。在脑出血急性期,非增强CT凭借快速成像的特性,能直观呈现血肿形态、位置与大小,帮助医生捕捉早期出血范围变化,为判断是否存在血肿扩大风险提供关键依据。其强调的CT扫描时间窗口意义重大,早期及时的CT检查不仅能发现潜在的出血扩张征象,如漩涡征、混杂征等,还能结合患者临床症状,更精准地评估病情,为后续选择保守治疗、手术干预等方案奠定基础,对改善患者预后有着不可忽视的作用 。

对于深度学习模型方法的研究

由于传统CNN图像检测模型的视野受限,无法捕捉到长距离之间的联系使其在该领域的效果并不理想。所以该论文尝试使用Swin UNETR模型应用到动脉瘤性蛛网膜下腔出血后头部 CT 扫描血液分割这一任务中,有着不错的效果。Swin UNETR的是一种结合swin-transformers和U-net两种模型优点的模型,其中swin-transformers作为编码器高效的捕捉多尺度空间特征,U-net作为解码器还原数据的空间特征并捕捉swin-transformers遗漏的局部细节。但是由于transformers模型的复杂性,该模型对设备的要求比较高,而且对数据集的要求比较严格。尽管这样,Swin UNETR为脑出血等神经疾病的自动诊断提供了新思路,但是在实际应用中仍然要想办法解决计算资源需求量大和数据集要求严格等问题。

Efficient Scopeformer是一种深度学习模型,专门用于颅内出血的检测和分类任务。该模型在CT图像分析中使用了Transformer架构,结合了卷积神经网络(CNN)和自注意力机制,能够有效地提取图像中的空间和前后特征。通过与传统CNN模型的对比,Efficient Scopeformer在准确性、灵敏度和计算效率上都表现出色,尤其在大规模数据集的处理上,显示了较高的实时性和准确性。该研究表明,深度学习模型能够弥补传统CT扫描方法在脑出血分期和早期诊断中的不足,提供更为精准的自动化诊断。

[3]针对基于CT图像的脑出血检测方法进行了深入研究,提出了一种将残差网络引入了 U-Net,加深网络结构用来提高脑实质分割效果和一种新的命名ResNet-F 的网络模型。该研究通过训练深度学习模型,能够自动识别CT图像中的脑出血区域,并对出血的位置和大小进行分类。提出的改进算法比原来的算法在提升精度和速率的方面有显著提高。

结论

从上面总结的不同的方法可以看出,CT在脑出血检测中的作用不可忽视,尤其是非增强CT和多排CT血管造影在急性期脑出血的诊断中起到了重要作用。然而,随着深度学习模型的不断发展,特别是像Swin UNETR和Efficient Scopeformer这样的先进的大模型,CT图像分析的敏感度和准确性得到了显著提升。深度学习模型能够弥补传统CT方法在一些方面的缺陷,尤其是在脑出血的早期诊断、分期判断以及复杂病例的自动化分析中展现了强大的优势。以后应将及时性和计算效率的优化将成为研究的重点,以推动这些先进技术在临床实践中的广泛应用。

[1] Delgado Almandoz J E, Schaefer P W, Kelly H R, et al. Diagnostic Accuracy and Yield of Multidetector CT Angiography in the Evaluation of Spontaneous Intraparenchymal Cerebral Hemorrhage[J]. Stroke, 2009, 40(6): 2060-2065.

[2] Morotti A, Dowlatshahi D, Boulouis G, et al. Non-contrast CT markers of intracerebral hemorrhage expansion: The influence of onset-to-CT time[J]. Stroke, 2023, 54(1): 170-177.

[3] 冯玄. 基于CT图像的脑出血检测方法研究[D]. 南京邮电大学, 2021.

[4] Lu X, Shi S, Li H, et al. A Fully Automated Pipeline Using Swin Transformers for Deep Learning-Based Blood Segmentation on Head CT Scans After Aneurysmal Subarachnoid Hemorrhage[J]. NeuroImage: Clinical, 2023, 38: 103492.

[5] Bhardwaj P, Rajpoot K, Mahmood Q. Efficient Scopeformer: Towards Scalable and Rich Feature Extraction for Intracranial Hemorrhage Detection[J]. IEEE Access, 2023, 11: 120876-120888.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值