自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(27)
  • 收藏
  • 关注

原创 Python 六大数据类型全面解析

int(整数):无小数部分的整数,可正可负,支持任意大小(无需担心溢出)。a = 10(正整数)、b = -5(负整数)、c = 0(零)、(极大整数,Python 原生支持)。float(浮点数):带小数部分的数值,本质是二进制浮点数(可能存在精度误差)。e = 3.14f = -0.5g = 2.02.0是 float,而非 int)、h = 1e5(科学计数法,等价于100000.0complex(复数):由实部和虚部组成的数值,虚部用j或J表示。i = 3 + 4j。

2025-09-15 09:52:46 1061

原创 深度学习(Deep Learning)全面详解:从原理到应用

深度学习通过 “层级化特征学习” 和 “端到端优化”,彻底改变了人工智能的发展轨迹,从图像识别、语音助手到自动驾驶、大语言模型,深度学习已渗透到生产生活的方方面面,成为推动 “智能化革命” 的核心技术。然而,深度学习并非 “万能钥匙”,仍面临数据依赖、可解释性差、鲁棒性不足等挑战。

2025-09-15 09:49:29 1240

原创 11 种核心卷积技术深度解析(完整版)

卷积类型核心创新点解决的关键问题典型应用场景计算量 / 参数量特点标准卷积滑动窗口加权求和基础特征提取所有 CNN 的基础模块(分类、检测)高(基准值)转置卷积插入零值实现上采样低分辨率→高分辨率重建分割、生成、超分辨率与同参数标准卷积相当空洞卷积空洞率扩大感受野大感受野与计算成本的矛盾语义分割(需全局上下文)与同尺寸标准卷积相同分组卷积通道分组并行计算大通道数的计算 / 显存压力多 GPU 并行、轻量化网络标准卷积的 1/g(g 为分组数)深度可分离卷积。

2025-09-15 09:29:02 698

原创 各类卷积技术详细解析(补充篇)

空间注意力卷积的核心是在卷积过程中引入空间维度的注意力机制,聚焦输入特征图中 “空间位置上更重要的区域”(如物体的轮廓、关键部件),抑制无关背景区域的干扰。特征压缩:对输入特征图(形状为C×H×W,C 为通道数、H 为高度、W 为宽度)进行通道维度的聚合操作 —— 通常是全局平均池化(将每个通道压缩为1×1的值)和全局最大池化(同样得到1×1的值),得到两个1×H×W的特征图。特征融合与权重计算:将两个1×H×W的特征图按通道拼接,得到2×H×W的特征图;再通过一个7×7(或3×3。

2025-09-15 09:16:22 902

原创 6种卷积核心逻辑:从定义到应用全解析

扁平卷积是对标准 3D 卷积(空间 + 通道维度)的拆解—— 将原本一个 “空间 + 通道” 联合计算的卷积核,拆成 3 个独立的 1×1 卷积核(仅作用于通道维度),分别对输入特征图进行卷积,最后合并结果。这里的 “扁平” 并非指空间维度扁平化(如 Flatten 层),而是指 “将 3D 卷积的复杂计算扁平为多个 1×1 卷积的简单计算”。分组卷积是将输入特征图的通道分成多个组,每个组单独用一组卷积核做标准 2D 卷积(空间维度计算),最后将所有组的输出按通道拼接。

2025-09-15 09:02:37 1151

原创 揭秘语音识别的5大核心技术

音素是构成语音的最小单位,不同语言的音素集合不同。以中文为例,“你好(nǐ hǎo)” 可拆分为 “n - ǐ - h - ǎ - o”5 个音素;英文 “hello” 可拆分为 “h - e - l - l - o” 5 个音素。音素是连接 “声音” 和 “文字” 的桥梁,声学模型的目标就是建立 “声音特征→音素” 的映射关系。

2025-09-10 16:00:26 657

原创 Ubuntu VNC一键配置指南

使用vnc viewer软件进行VNC连接,首先需要查询ip地址,我这里插到的是10.224.6.86,输入IP地址后点击OK,双击对应的VNC用户输入密码,最后进入到VNC界面。编辑org.gnome,恢复丢失的“enabled”参数,输入一下命令进入文件,将下方key内容添加到文件的最后面。如果系统设置为需要输入用户密码才可以进入桌面,以上的改脚本需要等进入桌面后才会启动,建议将系统设置为用户自动登录到桌面。这种是属于手动启动,如果每次都需要手动启动会比较麻烦下面会设置开机自启动的形式。

2025-09-10 14:50:06 778

原创 linux安装软件

常用软件qq,微信,谷歌游览器,wps,cuda,cudnn,百度网盘,飞书,搜狗输入法,qq音乐。

2025-09-09 14:07:06 415

原创 从零搭建OCR文本识别系统

win+R输入cmd打开终端。

2025-09-09 10:36:04 925

原创 yolov3和yolov5的区别

选择依据推荐 YOLOv3 的场景推荐 YOLOv5 的场景技术栈依赖熟悉 C 语言、需基于 DarkNet 二次开发。熟悉 PyTorch、需快速调试 / 部署。性能需求仅需检测中大型目标、对精度 / 速度要求低。需检测小目标 / 遮挡目标、追求高精度 + 高速度。部署场景仅需服务器端 C++ 部署,无移动端 / 边缘设备需求。需跨平台部署(服务器 / 移动端 / 边缘设备)。开发效率可接受手动调参、编写增强代码,开发周期长。追求快速落地(如 1-2 周完成从训练到部署)。

2025-09-09 08:59:06 886

原创 YOLOv5 vs YOLOv8:全面升级对比

YOLOv8 是 YOLOv5 的 “全面升级款”—— 通过Anchor-Free 架构优化精度、C2f 模块降低计算量、多任务融合扩展场景,在 “精度、速度、部署友好性” 上全面超越 YOLOv5;而 YOLOv5 更适合 “简单场景、低硬件成本、熟悉旧架构” 的存量项目。如果是新项目开发,优先选择 YOLOv8;如果是旧项目维护,且无精度 / 速度瓶颈,可继续使用 YOLOv5。

2025-09-09 08:50:22 720

原创 暗夜精灵安装双系统-ubuntu系统

我这里有一下ubunt系统必备的安装软件包,定期更新链接: https://pan.baidu.com/s/1wmwExMobMvaAjSGaWx_SGA?pwd=ejfq 提取码: ejfq--来自百度网盘超级会员v2的分享linux安装指令:ctrl + win + t 打开终端下载指令sudo apt intalll 软件包路径。

2025-09-09 07:41:18 1099

原创 滤波技术全解析(理论)

先看噪声类型高斯噪声 → 高斯滤波(优先)、均值滤波;椒盐噪声 → 中值滤波(优先)、排序统计滤波;混合噪声 → 双边滤波、引导滤波(保边 + 去多种噪声)。再看实时性需求实时场景(如视频) → 高斯滤波、中值滤波、引导滤波;离线场景(如单张图像、医学数据) → 双边滤波、频域滤波。最后看边缘保护需求需保留边缘(如物体检测、文字识别) → 高斯滤波、双边滤波、引导滤波;边缘无要求(如背景平滑) → 均值滤波、盒式滤波。

2025-09-08 16:16:38 608

原创 图像二值化技术全解析

选择二值化方法的核心逻辑是匹配图像的灰度分布与噪声特征光照均匀、无噪声 → 优先用 Otsu 法(高效);光照不均、轻微噪声 → 用局部高斯均值法(平衡效果与速度);噪声明显(尤其是椒盐噪声) → 用局部中位数法;彩色图像、灰度重叠 → 用基于颜色的二值化。

2025-09-08 16:01:12 923

原创 形态学操作:图像处理的四大核心技巧

操作类别具体操作核心逻辑主要用途基础操作腐蚀取结构元素覆盖最小像素值去小噪声、断细连接膨胀取结构元素覆盖最大像素值填小孔洞、连细断裂开运算先腐蚀后膨胀去亮噪声、平滑边界闭运算先膨胀后腐蚀填暗孔洞、平滑边界组合操作形态学梯度膨胀 - 腐蚀(或变种)提取目标边界顶帽变换原图 - 开运算结果亮背景提暗目标底帽变换闭运算结果 - 原图暗背景提亮目标击中击不中变换结构元素前景 + 背景匹配精确匹配特定形状目标高级操作形态学重建迭代膨胀标记图像(限模板)

2025-09-08 15:50:47 961

原创 残差网络:突破深度学习的性能瓶颈

残差网络(Residual Network,简称)是 2015 年由何凯明等人在 CVPR 会议上提出的深度卷积神经网络(CNN)架构,其核心创新是,成功解决了传统深度网络随层数增加而出现的 “梯度消失 / 梯度爆炸” 和 “性能退化” 问题,使训练数千层的极深网络成为可能。ResNet 的提出极大推动了计算机视觉(CV)领域的发展,后续许多主流架构(如 ResNeXt、DenseNet、EfficientNet)均基于其思想改进。

2025-09-08 15:35:17 683

原创 梯度反传的方法

分类维度方法名称核心特点适用场景计算方式与批次标准反向传播1 样本 1 更新,噪声大,内存低极小数据、内存极度受限批量反向传播全样本 1 更新,梯度准,内存高小规模数据、理论研究小批量反向传播折中方案,效率高,平衡好主流场景(图像、NLP、检测等)内存与计算权衡梯度检查点存检查点,重计算非检查点,内存降 30%-80%超大模型(千亿参数 Transformer、深 ResNet)反向重计算不存激活值,重计算所有层,内存最低极端内存受限场景梯度传播范围局部反向传播。

2025-09-08 15:32:38 764

原创 目标检测,语义分割,实例分割

任务类型核心目标输出结果(以 “1 猫 + 2 狗” 图像为例)通俗理解目标检测1. 识别图像中所有目标的类别;2. 用矩形框(Bounding Box)定位目标位置。3 个矩形框 + 类别标签(如 “猫 (框 1)”、“狗 (框 2)”、“狗 (框 3)”)“图中有什么?在哪里?语义分割对图像中每一个像素标注类别(不区分同一类别的不同个体)。逐像素标签(如 “猫像素”、“狗像素”、“背景像素”)“每个像素属于哪一类?实例分割对图像中每一个像素标注类别,且区分同一类别的不同个体(实例)。

2025-09-08 15:29:51 578

原创 激活函数:神经网络的非线性引擎

激活函数是神经网络中至关重要的组件,它的核心意义是,使神经网络能够学习和表达复杂的非线性关系,这是深度学习模型能够解决复杂任务(如图像识别、自然语言处理)的基础。

2025-09-08 15:01:05 289

原创 卷积神经网络:揭秘卷积核与特征图奥秘

输入特征图(Input Feature Map):卷积操作的 “原材料”,可以是原始图像(如 RGB 图像为 3 通道特征图)或前一层卷积的输出。通常用维度表示为(H = 高度,W = 宽度,C = 通道数 / 深度)。卷积核(Kernel):用于 “扫描” 输入特征图并提取局部特征的小矩阵,本质是一组可学习的权重参数。单个卷积核的维度为(K = 卷积核大小,如 3×3、5×5;C_in必须与输入特征图的通道数一致,确保逐通道匹配计算)。输出特征图(Output Feature Map)

2025-09-08 15:00:02 547

原创 神经网络连接方式大PK:稠密VS稀疏

特性稠密连接稀疏连接连接方式全连接局部或选择性连接参数量大小计算复杂度高低典型应用全连接层、DenseNet卷积层、稀疏注意力机制。

2025-09-08 14:55:13 210

原创 快速搭建AnyLabeling标注环境

安装指令:pip install -r requirements-[xxx].txt。

2025-09-08 14:49:35 270

原创 Swift框架对Qwen3-8B模型进行微调(体验版)

在算力云上面复制粘贴的时候斜杠后面不能有 ----‘空格’

2025-09-08 14:43:40 205

原创 yolov11训练仅限于跑通目标检测

不用一个一个下载,做成requirements.txt放到项目文件夹里面打开终端激活环境输入指令pip install requirements.txt。路径:ultralytics-main\ultralytics\cfg\models\11\yolo11.yaml。路径:ultralytics-main\ultralytics\cfg\datasets\coco8.yaml。选择打开文件夹位置,选择自动保存,更改输出目录。1.打开git搜索yolov11,下载数据集。编辑项目中的.yaml 文件。

2025-09-08 14:36:38 557

原创 轻松搞定虚拟机安装全流程

进入Broadcom注册页面:https://profile.broadcom.com/web/registration。依次选择「Software」>「VMware Cloud Foundation」>「My Downloads」选择自己下载的IOS镜像,自己去官网下载。在搜素框输入“Windows功能”不需要产品体验和检测更新。--目前只有20加22。官方下载地址(不推荐)配置完成后面就OK了。

2025-09-08 14:27:57 374

原创 Anaconda与PyCharm安装配置全攻略

清华网址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/下载好后安装Anaconda3直接双击安装包官方下载网址:https://docs.anaconda.net.cn/anaconda/allpkglists/双击下载好的安装包点击Next既可以点击I Agree选择第一个路径给成E盘需要给C盘更多的空间全选不选。

2025-09-08 14:15:53 863

原创 CUDA与cuDNN安装指南

注意:win + R 打开终端输入nvidia-smi查看自己CUDA Version版本,下载的版本不能高于CUDA Version,想要下载高版本可以升级驱动。进入CUDA安装路径的extras\demo_suite目录下,查看是否有。输入nvcc -V,这里显示你安装的CUDA的版本信息,说明安装成功了。在当前目录的地址输入cmd,进入终端输入bandwidthTest回车。点击自己需要下载的版本,根据系统和版本选择本地安装。安装完成点开安装包选择系统默认位置,直接点击ok。搜索cudnn历史版本。

2025-09-08 14:03:22 314

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除