概括
提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加
在联邦学习过程中允许多个用户使用个体数据在本地训练机器学习模型,然后以隐私保护的聚合方式更新全局模型。
然而,在联邦学习中,用户的模型参数存在隐私泄露风险,聚集服务器也可能伪造聚合结果。
本文提出了可验证的链式聚合隐私保护(PPFL)方案SVCA。
先对用户进行分组并构造链式聚合结构,然后采用秘密共享的方式方式整租用户丢失,最后提出了一种聚合结果的安全验证方案,保证了聚合结果的安全性和验证过程的安全性分析证明。
此外,第二个挑战是在保证安全验证的同时,减少不必要的计算和通信开销是非常必要的。提出了一种安全可验证的PPFL链式聚合,该聚合使用了轻量级的密码原语,不仅保护了用户的隐私,而且验证了聚合的正确性,保证了验证过程的安全性.更具体地说:1)为了实现解决方案的轻量级原则,我们对不同区域的用户进行分组,每个组使用链式聚合操作,并将其发送到聚合服务器。2)为了验证聚合结果的正确性和保证验证过程的安全性,我们采用了一种承诺方案来保证向量对不被篡改,并允许每个用户验证返回结果的正确性。
综上所述,本文的主要贡献可以概括如下。1)提出的SVCA算法不仅能够保护用户模型参数的隐私性,而且能够支持不同区域的整组用户的退出.此外,SVCA具有简单的架构,允许在资源有限的设备上部署。2)为了保护聚合服务器免受单点故障的影响,SVCA使用Hadamard乘积来验证聚合结果的正确性,并使用提交方案来保证验证过程的安全性。3)安全性分析表明,SVCA保证了用户的隐私,并验证了返回的聚合结果的正确性。大量实验证明SVCA不影响模型的分类性能,具有实用性。
提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
背景
基于噪声的链式联邦学习
与传统的加密方法不同,基于DP的PPFL是一种数据扰动方法,根据数据的统计分布机制,通过在FL训练参数中加入噪声来实现隐私保护。与其他方法相比具有相对较低的计算开销,但以牺牲模型精度为代价。此外,此类方案通常会在模型参数中引入难以去除的噪声,从而难以保证返回的聚合结果的正确性。
基于安全多方计算的链式联邦学习
基于掩码的PPFL
Chain-PPFL使用单掩码和链式传输通信机制,但它没有考虑聚合服务器的单点故障。
Xu et al. ,Guo et al. ,Ren et al. 和Li et al. 都采用了基于成对掩码的安全聚合协议。该协议在诚实但好奇和活跃的对手设置中是高度安全的,并支持用户退出。但是,它不保证返回的聚合结果的正确性。类似于利用单一屏蔽聚合协议来实现安全聚合,但他们尚未考虑返回聚合结果的正确性。
基于密码共享的PPFL
在基于SS的PPFL方案中,用户计算秘密数据的份额并将其发送到聚合服务器,聚合服务器重构秘密数据。