A Verifiable Privacy-Preserving Federated Learning Framework Against Collusion Attacks 联邦学习文献阅读

系列文章目录

提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加


提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档


概括

提示:这里可以添加本文要记录的大概内容:

目前大多数旨在保护隐私的联邦学习方案都存在合谋攻击的脆弱性,并且缺乏参与者的验证机制来巩固参数服务器的聚合结果,从而导致用户的隐私泄露和不准确的模型训练结果。

为了解决这些问题,我们提出了一个可验证的隐私保护联邦学习框架对抗共谋攻击。首先,利用ElGamal加密算法重新配置联合学习方案,该算法有效地保护了某些参与者和服务器之间勾结的情况下参与者的数据隐私。

此外,辅助服务器的引入可以实现非合谋的参数服务器和辅助服务器对梯度密文的联合解密,可以有效抵御数据上传过程中单一参数服务器模型的内部攻击。第三,该方案设计了一种验证机制,使参与者能够有效地验证参数服务器聚合结果的准确性和完整性,防止参数服务器向参与者返回不正确的聚合结果。实验结果和性能分析表明,我们提出的方案不仅加强了安全措施,而且还保持了模型训练的精度,超过了许多现有的方法的安全性和正确性。


提示:以下是本篇文章正文内容,下面案例可供参考

介绍

大量的数据在促进深度学习训练和预测过程中发挥着至关重要的作用;然而,它们同时引起了隐私问题。第一,包括参与者的私人数据数据集内的信息可能会无意中暴露与所涉及的个人有关的机密信息。此外,当数据上传到服务器时,数据所有者缺乏对其私人数据使用的意识和控制。相反,某些领域(如医疗机构)受到禁止共享敏感数据(如患者记录)的监管约束。(数据孤岛和隐私问题)

因此,如果医疗机构希望构建高度准确的医疗诊断模型,并且法律的限制仅限制其访问非敏感数据,则机构内有限的数据可用性可能导致训练不精确的深度学习模型。

因此,为了保护参与者的隐私,研究人员引入了联邦学习的概念。这种方法使相互不信任的参与者能够协作学习,而不会泄露他们各自的私有数据集。与仅仅依赖本地数据集相反,通过共享深度学习模型,所有参与者的目标是共同训练更精确的模型。

首先,每个参与者使用各自的本地数据集单独训练模型,从而生成梯度向量。随后,这些梯度向量被上传到参数服务器用于聚合。在完成聚合过程后,每个参与者从参数服务器检索聚合的梯度向量,并利用它们来更新本地深度学习模型。这个迭代过程会继续下去,直到获得更精确的模型。虽然联邦学习提供了防止攻击者直接访问私有数据的保护,但Phong等人证明,即使只共享梯度,对手仍然可以访问参与者的隐私数据。与此同时,Ma等人开发了一种利用ElGamal同态加密算法的多方深度学习方案。虽然该方案有

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值