A Privacy-Preserving Federated Learning Framework With Lightweight and Fair in IoT 阅读文献

概括

提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加
联邦学习为参与者的数据隐私提供了部分保障。然而,目前缺乏针对物联网(IoT)量身定制的高效隐私保护联邦学习技术,这构成了一项挑战。虽然已有许多隐私保护的联邦学习框架提出,主要依赖同态加密系统,但它们在物联网中的适用性仍然有限。此外,联邦学习在物联网中的应用面临两个重要障碍:减轻巨大的通信成本和通信失败率,并有效识别和利用高质量数据,同时剔除低质量数据以进行协同建模。为了解决这些挑战,本文提出了一种隐私保护的最优聚合联邦学习框架,该框架依赖于多密钥EC-ElGamal加密系统(MEEC)和联邦和优化算法(FSOA),具有轻量化和公平性特点。提出的MEEC方法旨在解决联邦学习中的多密钥协作计算问题,从而减少通信成本并提高通信效率。通过利用EC-ElGamal加密系统,它能够生成短密钥和密文。此外,本文提出了一种动态联邦学习框架,结合了用户动态退出和加入算法。该框架的主要目标是减轻通信失败的负面影响,并增强物联网设备上的计算能力。此外,还设计了一种FSOA,确保获取最优的训练数据,从而防止低质量数据被纳入训练过程。最终,本文对所提方案进行了严格的安全性分析和性能评估。结果表明,所提方案在安全性、实用性和效率方面明显优于现有解决方案,并且具有较低的通信和计算成本。


提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档


联邦学习的背景和挑战

提示:这里可以添加本文要记录的大概内容:

联邦学习使多个参与者能够在不需要披露本地数据的情况下进行协作模型训练,从而在很大程度上保障了数据隐私,并促进了跨多个数据孤岛的数据共享。目前,联邦学习与边缘计算的结合被广泛用于提升物联网(IoT)中多个参与者之间联合训练的效率。然而,由于边缘计算本身存在的局限性,如计算能力和通信资源的限制[1],这种协作应用的性能受到了阻碍。此外,联邦学习的实施需要大量的数据和反复的模型训练交互,这进一步限制了联邦学习在物联网中的应用。

尽管联邦学习在隐私保护方面表现出色,但物联网目前仍缺乏一种可以有效应用的高效隐私保护联邦学习技术。在物联网场景中,联邦学习面临的挑战之一是通信相关的高成本和失败率。在联邦学习网络中,包括智能机器人和智能仪表在内的众多边缘设备需要与参数服务器进行通信。如果所有边缘设备都参与完整的训练过程,网络将会因巨大的通信成本而负担沉重,尤其是在并非所有客户端都能对每轮训练显著贡献的情况下。此外,受限的网络带宽和众多的操作节点进一步加剧了通信失败的发生,迫使客户端设备中断或退出。

数据质量问题和现有解决方案

另一个联邦学习在物联网应用中面临的挑战是如何在联邦建模中有效利用高质量数据。以往的联邦学习研究在数据处理上通常平等对待所有客户端,而没有考虑训练准确性和实际效果的差异[2][3]。然而,在实际场景中,训练结果可能会因数据不公正而不准确,从而导致模型效果不佳。这种数据不公正可能由以下因素导致:设备离线或中断、低质量数据、不平衡数据、或非独立同分布(non-IID)数据。为确保公正性,一些方案选择高质量数据进行训练,并排除恶意或低质量用户。例如,Zhao等人[4]提出了第一个考虑不可靠参与者的隐私保护协作深度学习框架。该框架采用指数机制处理不可靠参与者

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值