Kevin带你领略不一样的二分查找

二分查找

二分查找是一种极其基本的算法 但同时他的高效性常被用于开发 因此 我们今天就来聊聊这个基本的算法入门 二分查找

首先 二分查找是一种非常简单易懂的快速查找算法,生活中到处可见。比如说,我们现在来做一个猜字游戏。我随机写一个 0 到 99 之间的数字,然后你来猜我写的是什么。猜的过程中,你每猜一次,我就会告诉你猜的大了还是小了,直到猜中为止。

这种简单的循环在我第一天就会写了嘿嘿 直接贴代码

import java.util.Random;
import java.util.Scanner;

public class demo2 {
    public static void main(String[] args) {
        Random rand = new Random();
        int target = rand.nextInt(100)+1;
        int count=0;
        Scanner sc = new Scanner(System.in);
        while (true) {
            int x = sc.nextInt();
            count++;
            if (x > target) {
                System.out.println("大了");
            } else if (x < target) {
                System.out.println("小了");
            } else {
                System.out.println("猜中了");
                System.out.println("您一共猜了" + count + "次");
                break;
            }
        }
    }
}

比如随机数生成的是21 我们怎样才能尽可以快的猜出呢 显然不能一个一个猜 根据经验 肯定是从中间开始猜最简单 模拟一下 50 20 15 20 23 21只需要6次就可以猜出 这也是二分查找最简单的应用

二分查找是一种非常高效的查找算法,高效到什么程度呢?我们来分析一下它的时间复杂度。
我们假设数据大小是 n,每次查找后数据都会缩小为原来的一半,也就是会除以 2。最坏情况下,直到查找区间被缩小为空,才停止。

显然 数据是以等比数列来逐渐缩小的 根据等比数列求和 显然为2的k次方 因此查找的时间复杂度就是O(logn) 看 是不是很高效

二分查找是我们目前为止遇到的第一个时间复杂度为 O(logn) 的算法。后面章节我们还会讲堆、二叉树的操作等等,它们的时间复杂度也是 O(logn)。我这里就再深入地讲讲 O(logn) 这种对数时间复杂度。这是一种极其高效的时间复杂度,有的时候甚至比时间复杂度是常量级 O(1) 的算法还要高效。

事实上 简单的二分查找很简单

最简单的情况就是有序数组中不存在重复元素,我们在其中用二分查找值等于给定值的数据。

public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
  while (low <= high) {
    int mid = (low + high) / 2;
    if (a[mid] == value) {
      return mid;
    } else if (a[mid] < value) {
      low = mid + 1;
    } else {
      high = mid - 1;
    }
  }
  return -1;
}

  1. 注意是 low<=high,而不是 low<high。

实际上,mid=(low+high)/2 这种写法是有问题的。因为如果 low 和 high 比较大的话,两者之和就有可能会溢出。改进的方法是将 mid 的计算方式写成 low+(high-low)/2。更进一步,如果要将性能优化到极致的话,我们可以将这里的除以 2 操作转化成位运算 low+((high-low)>>1)。因为相比除法运算来说,计算机处理位运算要快得多

并且更加优化计算也可以用 int mid = left + (target - arr[left]) * (right - left) / (arr[right] - arr[left]);
插值 这里就不过多赘述了

  1. low=mid+1,high=mid-1。注意这里的 +1 和 -1,如果直接写成 low=mid 或者 high=mid,就可能会发生死循环。比如,当 high=3,low=3 时,如果 a[3]不等于 value,就会导致一直循环不退出。也就是每次都要在插值的下一位

同理 递归也可以实现

public int bsearch(int[] a, int n, int val) {
  return bsearchInternally(a, 0, n - 1, val);
}
private int bsearchInternally(int[] a, int low, int high, int value) {
  if (low > high) return -1;
  int mid =  low + ((high - low) >> 1);
  if (a[mid] == value) {
    return mid;
  } else if (a[mid] < value) {
    return bsearchInternally(a, mid+1, high, value);
  } else {
    return bsearchInternally(a, low, mid-1, value);
  }
}

二分查找局限性

前面我们分析过,二分查找的时间复杂度是 O(logn),查找数据的效率非常高。不过,并不是什么情况下都可以用二分查找,它的应用场景是有很大局限性的。那什么情况下适合用二分查找,什么情况下不适合呢?

首先,二分查找依赖的是顺序表结构,简单点说就是数组。

那二分查找能否依赖其他数据结构呢?比如链表。答案是不可以的,主要原因是二分查找算法需要按照下标随机访问元素。我们在数组和链表那两节讲过,数组按照下标随机访问数据的时间复杂度是 O(1),而链表随机访问的时间复杂度是 O(n)。所以,如果数据使用链表存储,二分查找的时间复杂就会变得很高。

二分查找只能用在数据是通过顺序表来存储的数据结构上。如果你的数据是通过其他数据结构存储的,则无法应用二分查找。

举例说明一下

假设链表长度为n,二分查找每次都要找到中间点(计算中忽略奇偶数差异):
第一次查找中间点,需要移动指针n/2次;
第二次,需要移动指针n/4次;
第三次需要移动指针n/8次;

以此类推,一直到1次为值
总共指针移动次数(查找次数) = n/2 + n/4 + n/8 + …+ 1,这显然是个等比数列,根据等比数列求和公式:Sum = n - 1.
最后算法时间复杂度是:O(n-1),忽略常数,记为O(n),时间复杂度和顺序查找时间复杂度相同
但是稍微思考下,在二分查找的时候,由于要进行多余的运算,严格来说,会比顺序查找时间慢

因此 在链表查找中 不会用二分查找

其次,二分查找针对的是有序数据。

二分查找对这一点的要求比较苛刻,数据必须是有序的。如果数据没有序,我们需要先排序。前面章节里我们讲到,排序的时间复杂度最低是 O(nlogn)。所以,如果我们针对的是一组静态的数据,没有频繁地插入、删除,我们可以进行一次排序,多次二分查找。这样排序的成本可被均摊,二分查找的边际成本就会比较低。

但是,如果我们的数据集合有频繁的插入和删除操作,要想用二分查找,要么每次插入、删除操作之后保证数据仍然有序,要么在每次二分查找之前都先进行排序。针对这种动态数据集合,无论哪种方法,维护有序的成本都是很高的。

所以,二分查找只能用在插入、删除操作不频繁,一次排序多次查找的场景中。针对动态变化的数据集合,二分查找将不再适用。那针对动态数据集合,如何在其中快速查找某个数据呢?别急,等到二叉树那一节我会详细讲。

最后,数据量太小不适合二分查找。

如果要处理的数据量很小,完全没有必要用二分查找,顺序遍历就足够了。比如我们在一个大小为 10 的数组中查找一个元素,不管用二分查找还是顺序遍历,查找速度都差不多。只有数据量比较大的时候,二分查找的优势才会比较明显。

不过,这里有一个例外。如果数据之间的比较操作非常耗时,不管数据量大小,我都推荐使用二分查找。比如,数组中存储的都是长度超过 300 的字符串,如此长的两个字符串之间比对大小,就会非常耗时。我们需要尽可能地减少比较次数,而比较次数的减少会大大提高性能,这个时候二分查找就比顺序遍历更有优势。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值