关键词:矩阵理论,Routh-Hurwitz稳定性判据,Schur-Cohn稳定性判据,系统稳定性,控制理论,线性代数
1. 背景介绍
在控制理论和系统分析领域,稳定性是至关重要的概念。一个系统的稳定性是指其在受到扰动后,是否能够回到平衡状态。判断系统的稳定性对于确保系统可靠性和安全至关重要。
矩阵理论为分析和判断系统稳定性提供了强大的工具。其中,Routh-Hurwitz稳定性判据和Schur-Cohn稳定性判据是两种常用的方法,它们分别基于系统的特征多项式和矩阵的性质来判断系统的稳定性。
2. 核心概念与联系
2.1 系统稳定性
系统稳定性是指系统在受到扰动后,其状态变量的响应是否会保持在有限的范围内。
- 渐近稳定: 系统在受到扰动后,其状态变量会逐渐趋近于平衡状态。
- 稳定: 系统在受到扰动后,其状态变量不会无限发散,但可能不会完全回到平衡状态。
- 不稳定: 系统在受到扰动后,其状态变量会无限发散。