大语言模型应用指南:大语言模型的安全技术
关键词:大语言模型,安全性,隐私保护,对抗攻击,安全训练,差分隐私,安全评估,公平性,道德规范
1. 背景介绍
1.1 问题由来
近年来,随着深度学习和大数据技术的发展,大语言模型(Large Language Models, LLMs)在自然语言处理(Natural Language Processing, NLP)领域取得了巨大的突破。这些模型通过在大量无标签文本数据上预训练,学习到了丰富的语言知识和常识,能够生成自然流畅、具有上下文理解的文本。然而,随着这些模型在现实世界中的广泛应用,其安全性问题也逐渐凸显出来,引起了社会各界的广泛关注。
- 数据隐私:大语言模型往往需要大量的文本数据进行预训练,而这些数据中可能包含个人隐私信息。如何在保护数据隐私的同时训练模型,是亟需解决的问题。
- 对抗攻击:攻击者可以通过对抗样本或攻击算法,试图使大语言模型输出错误的结果,威胁到系统的安全性。
- 模型偏见:大语言模型可能会学习到数据中的偏见,导致输出