大语言模型的上下文窗口
关键词:大语言模型,上下文窗口,注意力机制,Transformer,Transformer自适应模型,长距注意力,序列自适应
1. 背景介绍
1.1 问题由来
在深度学习时代,随着神经网络模型的不断发展,大语言模型(Large Language Model, LLMs)在自然语言处理(Natural Language Processing, NLP)领域取得了显著的突破。这些模型基于自回归(如GPT)或自编码(如BERT)架构,通过在大规模无标签文本数据上进行预训练,学习到了丰富的语言知识和常识,具有强大的语言理解和生成能力。然而,在预训练阶段,模型只能利用当前窗口(Context Window)内的上下文信息进行学习。随着文本序列的扩展,模型将面临长距注意力和序列自适应问题,影响了模型的泛化能力和适应性。
1.2 问题核心关键点
大语言模型的预训练过程,通常采用Transformer等结构,通过自监督学习任务进行训练。这些任务通常要求模型能够利用当前窗口内的上下文信息,进行预测或分类。然而,当序列长度增加时,模型难以