从零开始大模型开发与微调:链式求导法则
关键词:大模型开发,微调,链式求导法则,深度学习,梯度传播,反向传播
1. 背景介绍
1.1 问题由来
随着深度学习技术的快速发展,大模型(Large Models)在人工智能领域的应用越来越广泛。从计算机视觉到自然语言处理,从推荐系统到金融预测,大模型的强大表现力使其成为许多行业的首选技术。然而,大模型的开发和训练成本非常高,需要大量的计算资源和时间。为了降低成本,研究人员和工程师们提出了许多方法,其中一种重要的方法是微调(Fine-tuning)。
微调是指在大模型上添加特定的任务层,并使用小规模的数据集进行训练,以适应新的任务。这种方法可以在保持大模型原有能力的基础上,进一步提升特定任务的表现,同时减少训练时间。
链式求导法则是微调中不可或缺的一部分。在微调过程中,我们需要计算模型参数对损失函数的导数,以更新参数并最小化损失。由于模型的复杂性,导数计算非常复杂,而链式求导法则提供了一种有效的解决方案。
1.2 问题核心关键点
链式求导法则是微调中计算梯度的核心方法。它利用函数的复合性质&#x