元强化学习:适应复杂动态环境的AI
关键词:元强化学习,复杂动态环境,多智能体系统,自适应策略,模型自适应,演化算法,自适应控制
1. 背景介绍
1.1 问题由来
近年来,随着人工智能技术的飞速发展,强化学习(Reinforcement Learning, RL)在智能决策、机器人控制、游戏智能等领域得到了广泛应用,并取得了显著成果。然而,强化学习在处理复杂动态环境时存在诸多挑战,如不确定性、时变性、多任务等,使得其应用范围受到限制。元强化学习(Meta Reinforcement Learning, MRL)应运而生,通过学习如何在复杂环境中快速适应和优化策略,成为应对这些挑战的有效手段。
元强化学习结合了强化学习和元学习的思想,旨在让智能体能够在新的、未知环境中快速适应并取得优异性能。其核心在于:
- 多智能体系统:处理动态和复杂环境中的多任务、多智能体交互。
- 自适应策略:智能体能够根据环境变化自适应地调整策略。
- 模型自适应:通过模型学习动态环境特征,适应环境变化。
- 演化算法<