1. 背景介绍
1.1 问题由来
当前人工智能发展面临诸多挑战,其中一个核心问题是如何有效提升基础模型(如自然语言处理模型、计算机视觉模型等)的表现。基础模型作为人工智能的核心组成部分,其性能直接影响整个系统的应用效果。然而,现有模型往往存在泛化能力不足、鲁棒性差等问题,难以满足实际应用需求。
1.2 问题核心关键点
基础模型的优化主要集中在以下几个方面:
- 数据效率:如何在大规模数据上进行高效训练,避免过拟合,提升泛化能力。
- 鲁棒性:如何增强模型的鲁棒性,使其在面对噪声数据、对抗攻击等情况时仍能保持稳定性能。
- 解释性:如何提高模型的可解释性,使其输出具有可解释性,便于理解和调试。
- 高效性:如何设计高效模型结构,提升推理速度和计算效率,适应不同应用场景的需求。
1.3 问题研究意义
优化基础模型,对于提升人工智能系统的整体性能、促进人工智能技术的产业化应用具有重要意义:
- 降低模型开发成本。优化后的模型可以在大规模数据上进行训练&#x