张钹院士:基础模型的三大出路

1. 背景介绍

1.1 问题由来

当前人工智能发展面临诸多挑战,其中一个核心问题是如何有效提升基础模型(如自然语言处理模型、计算机视觉模型等)的表现。基础模型作为人工智能的核心组成部分,其性能直接影响整个系统的应用效果。然而,现有模型往往存在泛化能力不足、鲁棒性差等问题,难以满足实际应用需求。

1.2 问题核心关键点

基础模型的优化主要集中在以下几个方面:

  1. 数据效率:如何在大规模数据上进行高效训练,避免过拟合,提升泛化能力。
  2. 鲁棒性:如何增强模型的鲁棒性,使其在面对噪声数据、对抗攻击等情况时仍能保持稳定性能。
  3. 解释性:如何提高模型的可解释性,使其输出具有可解释性,便于理解和调试。
  4. 高效性:如何设计高效模型结构,提升推理速度和计算效率,适应不同应用场景的需求。

1.3 问题研究意义

优化基础模型,对于提升人工智能系统的整体性能、促进人工智能技术的产业化应用具有重要意义:

  1. 降低模型开发成本。优化后的模型可以在大规模数据上进行训练&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值