迁移学习(Transfer Learning) - 原理与代码实例讲解
关键词:迁移学习, 预训练, 微调, 特征提取, 泛化能力, 超参数, 深度学习
1. 背景介绍
1.1 问题由来
迁移学习(Transfer Learning)是机器学习领域的一个重要研究方向,它基于已有知识,将一个领域学到的模型或特征,应用于另一个不同但相关的领域,从而达到提升新领域模型性能的目的。迁移学习的核心在于已有知识和新任务的共享,能够显著降低新任务的学习成本,提高模型泛化能力。
近年来,随着深度学习技术的发展,迁移学习在计算机视觉、自然语言处理等领域得到了广泛应用,显著提升了模型的性能和泛化能力。特别是在NLP领域,预训练-微调方法已经成为一种主流的模型训练范式,利用大规模无标签语料进行预训练,再通过下游任务的少量标注数据进行微调,可以显著提升模型在特定任务上的表现。
1.2 问题核心关键点
迁移学习的核心在于如何将源领域的知识迁移到目标领域。通常包括以下几个关键点:
- 选择合适的预训练模型:利用大模型如BERT、GPT等进行预训练,获得通用语言表示。