大语言模型原理基础与前沿 带有KL惩罚的强化学习:贝叶斯推理观点
关键词:大语言模型、强化学习、KL惩罚、贝叶斯推理、文本生成、自然语言处理
1. 背景介绍
近年来,大语言模型(Large Language Models,LLMs)在自然语言处理(Natural Language Processing,NLP)领域取得了令人瞩目的成就。从文本生成、翻译、问答到代码编写,LLMs展现出强大的能力,深刻地改变了我们与语言交互的方式。
传统的LLMs主要基于Transformer架构,通过大量的文本数据进行预训练,学习语言的语法和语义规律。然而,预训练模型的输出往往缺乏针对性,难以满足特定任务的需求。为了解决这个问题,强化学习(Reinforcement Learning,RL)逐渐成为LLMs训练的重要手段。
强化学习通过设计奖励机制,引导模型学习最优的策略,从而生成更符合用户期望的文本。然而,传统的RL方法存在一些问题,例如训练不稳定、样本效率低等。为了提高RL训练的效率和稳定性,引入KL惩罚(Kullback-Leibler Penalty)成为一种有效