1. 背景介绍
近年来,随着深度学习技术的快速发展,跨研究社区的基础模型同质化(Homogenization of Foundational Models)现象逐渐凸显。无论是自然语言处理(NLP)、计算机视觉(CV)、语音识别(ASR)等领域的最新进展,还是人工智能(AI)、机器学习(ML)、数据科学(Data Science)等方向的研究,都越来越多地基于一系列“大模型”(Large Models)进行探讨和实践。这些大模型往往拥有庞大的参数规模、丰富的语义表达能力以及广泛的迁移学习特性,成为引领技术趋势的关键因素。
1.1 问题由来
在AI和ML领域,跨领域的基础模型同质化现象尤其显著。以BERT、GPT等模型为代表的一系列大模型,通过在大规模无标签数据上进行自监督预训练,学习到了丰富的语言和视觉语义知识,并具备了良好的迁移学习特性。这些模型通过在大规模任务上微调,取得了显著的性能提升,引发了广泛关注和积极应用。然而,这种基于大模型的范式也带来了新的挑战和问题。
挑战一: 不同研究社区对基础模型的需求和应用场景存在差异,这导致不同社区对模型的优化目标和性能指标存在显著差异。例如,NL