模型安全:保障 AI 2.0 模型安全,防止被攻击、盗取或篡改
关键词:模型安全, 攻击, 盗取, 篡改, 对抗样本, 鲁棒性, 安全模型, 隐私保护, 对抗训练, 对抗评估, 威胁模型
1. 背景介绍
随着人工智能技术的快速发展,深度学习模型在各行各业得到了广泛应用,并逐渐成为AI 2.0时代的重要工具。然而,与此同时,模型的安全性问题也日益凸显,越来越多的深度学习模型遭受攻击、盗取或篡改的威胁。特别是深度学习模型在医疗、金融、司法等关键领域的应用,其安全性变得尤为重要。
模型安全涉及模型能否正确、可靠、完整、真实地执行任务。目前,针对模型的攻击手法包括对抗样本、模型盗取、模型篡改等多种形式。如何保障AI 2.0模型的安全,是当前深度学习领域的重要课题。
2. 核心概念与联系
2.1 核心概念概述
为更好地理解模型安全,我们首先介绍几个关键概念:
- 深度学习模型:通过神经网络实现的多层非线性映射,广泛应用于图像识别、自然语言处理、语音识别等领域。
- 对抗样本:通过精心设计、微小