场景理解与行为预测技术在自动驾驶中的新发展
关键词:自动驾驶、场景理解、行为预测、深度学习、计算机视觉、强化学习、预测模型
1. 背景介绍
自动驾驶技术作为未来交通运输的重要发展方向,其核心在于让车辆能够感知周围环境、理解场景含义以及预测其他路人的行为,从而做出安全、高效的决策。场景理解与行为预测技术作为自动驾驶的关键技术之一,旨在帮助车辆构建对周围环境的完整认知,并预测其他道路参与者的行为,从而实现安全、可靠的自动驾驶。
传统的自动驾驶系统主要依赖于传感器数据,如激光雷达、摄像头和雷达等,通过数据处理和分析来感知周围环境。然而,仅仅依靠传感器数据难以完全理解复杂的交通场景,例如识别行人、车辆和障碍物的类别、状态和意图等。随着深度学习技术的快速发展,场景理解与行为预测技术取得了显著进展。深度学习模型能够从海量数据中学习复杂的特征和模式,从而实现更准确、更可靠的场景理解和行为预测。
2. 核心概念与联系
2.1 场景理解
场景理解是指车辆对周围环境的感知和理解,包括识别和分类道路参与者(如行人、车辆、自行车等)、识别道路设施(如交通信号灯、道路标线等)、理解交通规则和场景上下文等。
2