深度 Qlearning:在边缘计算中的应用

1. 背景介绍

1.1 问题由来

深度强化学习(DRL)作为强化学习(Reinforcement Learning, RL)与深度神经网络(Deep Neural Networks, DNN)相结合的产物,已经在自动驾驶、游戏智能、机器人控制、自然语言处理等多个领域展现出强大潜力。其中,深度Q-learning作为DRL中的核心算法,能够高效地解决连续状态下的最优决策问题。然而,由于其在计算资源需求和数据存储上的高依赖,传统的深度Q-learning算法在资源受限的物联网(IoT)与边缘计算(Edge Computing)环境中难以直接应用。

近年来,随着边缘计算技术的发展,边缘设备(如智能家居、工业传感器、移动终端等)计算能力和存储资源的提升,使得深度Q-learning在物联网与边缘计算环境中成为可能。边缘计算环境相较于集中式计算,具有更低的时延和更强的实时性,能够更好地支撑深度Q-learning的快速迭代训练和实时决策。因此,深度Q-learning在边缘计算环境中的应用研究成为了研究热点,为深度强化学习在大规模资源受限场景中的应用开辟了新的道路。

1.2 问题核心关键点

深度Q-learning在边缘计算环境中的应用主要包括以下几个核心点:

  1. 计算效率与实时性:深度Q-learning算法复杂度高,计算资源需求大࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值