1. 背景介绍
1.1 问题由来
深度强化学习(DRL)作为强化学习(Reinforcement Learning, RL)与深度神经网络(Deep Neural Networks, DNN)相结合的产物,已经在自动驾驶、游戏智能、机器人控制、自然语言处理等多个领域展现出强大潜力。其中,深度Q-learning作为DRL中的核心算法,能够高效地解决连续状态下的最优决策问题。然而,由于其在计算资源需求和数据存储上的高依赖,传统的深度Q-learning算法在资源受限的物联网(IoT)与边缘计算(Edge Computing)环境中难以直接应用。
近年来,随着边缘计算技术的发展,边缘设备(如智能家居、工业传感器、移动终端等)计算能力和存储资源的提升,使得深度Q-learning在物联网与边缘计算环境中成为可能。边缘计算环境相较于集中式计算,具有更低的时延和更强的实时性,能够更好地支撑深度Q-learning的快速迭代训练和实时决策。因此,深度Q-learning在边缘计算环境中的应用研究成为了研究热点,为深度强化学习在大规模资源受限场景中的应用开辟了新的道路。
1.2 问题核心关键点
深度Q-learning在边缘计算环境中的应用主要包括以下几个核心点:
- 计算效率与实时性:深度Q-learning算法复杂度高,计算资源需求大